Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2310793121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861592

RESUMEN

mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.


Asunto(s)
Carcinoma de Células Renales , Resistencia a Antineoplásicos , Neoplasias Renales , Diana Mecanicista del Complejo 1 de la Rapamicina , Serina-Treonina Quinasas TOR , Animales , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Ratones , Humanos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Sirolimus/farmacología , Mutación , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico
2.
Genes Dev ; 37(13-14): 661-674, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553261

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8, which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in the heart and lungs, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in cotranscribed clusters and examples in which TDMD underlies "arm switching," a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8-null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Mamíferos/genética , Secuencia de Bases
3.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425885

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8 , which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in heart and lung, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in co-transcribed clusters and examples in which TDMD underlies 'arm switching', a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8 null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.

4.
Cell Metab ; 35(3): 429-437.e5, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889282

RESUMEN

Animals that consume fermenting fruit and nectar are at risk of exposure to ethanol and the detrimental effects of inebriation. In this report, we show that the hormone FGF21, which is strongly induced by ethanol in murine and human liver, stimulates arousal from intoxication without changing ethanol catabolism. Mice lacking FGF21 take longer than wild-type littermates to recover their righting reflex and balance following ethanol exposure. Conversely, pharmacologic FGF21 administration reduces the time needed for mice to recover from ethanol-induced unconsciousness and ataxia. FGF21 did not counteract sedation caused by ketamine, diazepam, or pentobarbital, indicating specificity for ethanol. FGF21 mediates its anti-intoxicant effects by directly activating noradrenergic neurons in the locus coeruleus region, which regulates arousal and alertness. These results suggest that this FGF21 liver-brain pathway evolved to protect against ethanol-induced intoxication and that it might be targeted pharmaceutically for treating acute alcohol poisoning.


Asunto(s)
Intoxicación Alcohólica , Humanos , Animales , Ratones , Etanol/toxicidad , Factores de Crecimiento de Fibroblastos/metabolismo , Encéfalo/metabolismo
5.
PLoS One ; 18(3): e0282223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36862715

RESUMEN

The microenvironment of solid tumors is characterized by oxygen and glucose deprivation. Acss2/HIF-2 signaling coordinates essential genetic regulators including acetate-dependent acetyl CoA synthetase 2 (Acss2), Creb binding protein (Cbp), Sirtuin 1 (Sirt1), and Hypoxia Inducible Factor 2α (HIF-2α). We previously shown in mice that exogenous acetate augments growth and metastasis of flank tumors derived from fibrosarcoma-derived HT1080 cells in an Acss2/HIF-2 dependent manner. Colonic epithelial cells are exposed to the highest acetate levels in the body. We reasoned that colon cancer cells, like fibrosarcoma cells, may respond to acetate in a pro-growth manner. In this study, we examine the role of Acss2/HIF-2 signaling in colon cancer. We find that Acss2/HIF-2 signaling is activated by oxygen or glucose deprivation in two human colon cancer-derived cell lines, HCT116 and HT29, and is crucial for colony formation, migration, and invasion in cell culture studies. Flank tumors derived from HCT116 and HT29 cells exhibit augmented growth in mice when supplemented with exogenous acetate in an Acss2/HIF-2 dependent manner. Finally, Acss2 in human colon cancer samples is most frequently localized in the nucleus, consistent with it having a signaling role. Targeted inhibition of Acss2/HIF-2 signaling may have synergistic effects for some colon cancer patients.


Asunto(s)
Neoplasias del Colon , Fibrosarcoma , Humanos , Animales , Ratones , Acetato CoA Ligasa , Transducción de Señal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Microambiente Tumoral
6.
PLoS Genet ; 19(1): e1010595, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656901

RESUMEN

Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Proteína S6 Ribosómica/genética , Proteína S6 Ribosómica/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Hepatocitos/metabolismo , Fenotipo , Conductos Biliares/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
7.
Elife ; 102021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34617884

RESUMEN

Apolipoprotein E4 (ApoE4) is the most important and prevalent risk factor for late-onset Alzheimer's disease (AD). The isoelectric point of ApoE4 matches the pH of the early endosome (EE), causing its delayed dissociation from ApoE receptors and hence impaired endolysosomal trafficking, disruption of synaptic homeostasis, and reduced amyloid clearance. We have shown that enhancing endosomal acidification by inhibiting the EE-specific sodium-hydrogen exchanger 6 (NHE6) restores vesicular trafficking and normalizes synaptic homeostasis. Remarkably and unexpectedly, loss of NHE6 (encoded by the gene Slc9a6) in mice effectively suppressed amyloid deposition even in the absence of ApoE4, suggesting that accelerated acidification of EEs caused by the absence of NHE6 occludes the effect of ApoE on amyloid plaque formation. NHE6 suppression or inhibition may thus be a universal, ApoE-independent approach to prevent amyloid buildup in the brain. These findings suggest a novel therapeutic approach for the prevention of AD by which partial NHE6 inhibition reverses the ApoE4-induced endolysosomal trafficking defect and reduces plaque load.


Asunto(s)
Apolipoproteína E4/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Placa Amiloide/genética , Intercambiadores de Sodio-Hidrógeno/genética , Animales , Apolipoproteína E4/metabolismo , Femenino , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Ratones Noqueados , Intercambiadores de Sodio-Hidrógeno/metabolismo
8.
J Biol Chem ; 297(3): 101037, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343565

RESUMEN

Besides contributing to anabolism, cellular metabolites serve as substrates or cofactors for enzymes and may also have signaling functions. Given these roles, multiple control mechanisms likely ensure fidelity of metabolite-generating enzymes. Acetate-dependent acetyl CoA synthetases (ACS) are de novo sources of acetyl CoA, a building block for fatty acids and a substrate for acetyltransferases. Eukaryotic acetate-dependent acetyl CoA synthetase 2 (Acss2) is predominantly cytosolic, but is also found in the nucleus following oxygen or glucose deprivation, or upon acetate exposure. Acss2-generated acetyl CoA is used in acetylation of Hypoxia-Inducible Factor 2 (HIF-2), a stress-responsive transcription factor. Mutation of a putative nuclear localization signal in endogenous Acss2 abrogates HIF-2 acetylation and signaling, but surprisingly also results in reduced Acss2 protein levels due to unmasking of two protein destabilization elements (PDE) in the Acss2 hinge region. In the current study, we identify up to four additional PDE in the Acss2 hinge region and determine that a previously identified PDE, the ABC domain, consists of two functional PDE. We show that the ABC domain and other PDE are likely masked by intramolecular interactions with other domains in the Acss2 hinge region. We also characterize mice with a prematurely truncated Acss2 that exposes a putative ABC domain PDE, which exhibits reduced Acss2 protein stability and impaired HIF-2 signaling. Finally, using primary mouse embryonic fibroblasts, we demonstrate that the reduced stability of select Acss2 mutant proteins is due to a shortened half-life, which is a result of enhanced degradation via a nonproteasome, nonautophagy pathway.


Asunto(s)
Acetato CoA Ligasa/química , Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Acetato CoA Ligasa/genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos/química , Fibroblastos/enzimología , Humanos , Ratones , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Alineación de Secuencia
9.
Cancers (Basel) ; 13(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065332

RESUMEN

BACKGROUND: The prognostic performance of the residual cancer burden (RCB) score is a promising tool for breast cancer patients undergoing neoadjuvant therapy. We independently evaluated the prognostic value of RCB scores in an extended validation cohort. Additionally, we analyzed the association between chemotherapy dose reduction and RCB scores. METHODS: In this extended validation study, 367 breast cancer patients with available RCB scores were followed up for recurrence-free survival (RFS), distant disease-free survival (DDFS), and overall survival (OS). We also computed standardized cumulative doses of anthracyclines and taxanes (A/Ts) to investigate a potential interaction between neoadjuvant chemotherapy dose reduction and RCB scores. RESULTS: Higher RCB scores were consistently associated with adverse clinical outcomes across different molecular subtypes (HR for RFS = 1.60, 95% CI 1.33-1.93, p < 0.0001; HR for DDFS = 1.70, 95% CI 1.39-2.05, p < 0.0001; HR for OS = 1.67, 95% CI 1.34-2.08, p < 0.0001). The adverse impact prevailed throughout 5 years of follow-up, with a peak for relapse risk between 1-2 years after surgery. Clinical outcomes of patients with RCB class 1 did not differ substantially at 5 years compared to RCB class 0. A total of 180 patients (49.1%) underwent dose reduction of neoadjuvant A/T chemotherapy. We observed a statistically significant interaction between dose reduction and higher RCB scores (interaction p-value = 0.042). CONCLUSION: Our results confirm RCB score as a prognostic marker for RFS, DDFS, and OS independent of the molecular subtype. Importantly, we show that lower doses of cumulative neoadjuvant A/T were associated with higher RCB scores in patients who required a dose reduction.

10.
J Bone Miner Res ; 36(8): 1548-1565, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33905568

RESUMEN

Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Enfermedades Óseas/genética , Células Germinativas , Mutagénesis , Animales , Etilnitrosourea , Humanos , Ratones , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
11.
PLoS One ; 14(11): e0225105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31725783

RESUMEN

The response to environmental stresses by eukaryotic organisms includes activation of protective biological mechanisms, orchestrated in part by transcriptional regulators. The tri-member Hypoxia Inducible Factor (HIF) family of DNA-binding transcription factors include HIF-2, which is activated under conditions of oxygen or glucose deprivation. Although oxygen-dependent protein degradation is a key mechanism by which HIF-1 and HIF-2 activity is regulated, HIF-2 is also influenced substantially by the coupled action of acetylation and deacetylation. The acetylation/deacetylation process that HIF-2 undergoes employs a specific acetyltransferase and deacetylase. Likewise, the supply of the acetyl donor, acetyl CoA, used for HIF-2 acetylation originates from a specific acetyl CoA generator, acetate-dependent acetyl CoA synthetase 2 (Acss2). Although Acss2 is predominantly cytosolic, a subset of the Acss2 cellular pool is enriched in the nucleus following oxygen or glucose deprivation. Prevention of nuclear localization by a directed mutation in a putative nuclear localization signal in Acss2 abrogates HIF-2 acetylation and blunts HIF-2 dependent signaling as well as flank tumor growth for knockdown/rescue cancer cells expressing ectopic Acss2. In this study, we report generation of a novel mouse strain using CRISPR/Cas9 mutagenesis that express this mutant Acss2 allele in the mouse germline. The homozygous mutant mice have impaired induction of the canonical HIF-2 target gene erythropoietin and blunted recovery from acute anemia. Surprisingly, Acss2 protein levels are dramatically reduced in these mutant mice. Functional studies investigating the basis for this phenotype reveal multiple protein instability domains in the Acss2 carboxy terminus. The findings described herein may be of relevance in the regulation of native Acss2 protein as well as for humans carrying missense mutations in these domains.


Asunto(s)
Acetato CoA Ligasa/química , Acetato CoA Ligasa/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Secuencia Conservada , Mutación , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Secuencia de Aminoácidos , Animales , Genes Reporteros , Genotipo , Humanos , Ratones , Estabilidad Proteica
12.
Genes Dev ; 33(19-20): 1367-1380, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488578

RESUMEN

Fat storage in adult mammals is a highly regulated process that involves the mobilization of adipocyte progenitor cells (APCs) that differentiate to produce new adipocytes. Here we report a role for the broadly conserved miR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) as major regulators of APC differentiation and adipose tissue mass. Deletion of all miR-26-encoding loci in mice resulted in a dramatic expansion of adipose tissue in adult animals fed normal chow. Conversely, transgenic overexpression of miR-26a protected mice from high-fat diet-induced obesity. These effects were attributable to a cell-autonomous function of miR-26 as a potent inhibitor of APC differentiation. miR-26 blocks adipogenesis, at least in part, by repressing expression of Fbxl19, a conserved miR-26 target without a previously known role in adipocyte biology that encodes a component of SCF-type E3 ubiquitin ligase complexes. These findings have therefore revealed a novel pathway that plays a critical role in regulating adipose tissue formation in vivo and suggest new potential therapeutic targets for obesity and related disorders.


Asunto(s)
Adipogénesis/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , MicroARNs/metabolismo , Obesidad/genética , Células Madre/citología , Animales , Dieta Alta en Grasa , Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , MicroARNs/genética
13.
Ann Surg Oncol ; 26(13): 4274-4283, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31452052

RESUMEN

BACKGROUND: Assessing the residual cancer burden (RCB) predictive performance, the potential subgroup effects, and time-dependent impact on breast cancer patients who underwent neoadjuvant therapy in a developer's independent cohort is essential for its usage in clinical routine. METHODS: Between 2011 and 2016, the RCB scores of 184 female breast cancer patients were prospectively collected, and subsequent clinicopathological and follow-up data were obtained retrospectively. Recurrence-free survival (RFS), overall survival (OS), as well as subgroup analysis, and time-dependent variables were calculated with multivariate, complex, or linear statistical models. RESULTS: A total of 184 patients (HER2 33%, TNBC 27%), with a mean follow-up time of 4 years, treated with neoadjuvant systemic therapy (92% anthracycline-taxane based) were analyzed revealing 43 events (38 recurrences, 28 deaths). High RCB scores were associated with recurrence (median index: 2.34 vs. 1.39 points, rank-sum p < 0.0001), decreased RFS (hazard ratio [HR] = 1.80, 95% confidence interval [CI] 1.44-2.24, p < 0.0001) and reduced OS (HR 1.96, 95% CI 1.49-2.59, p < 0.0001). The RCB score showed proportionality of hazards (interaction HR with linear follow-up time = 1.00, p = 0.896) and good discriminating power (Harrell's c index 0.7). CONCLUSIONS: Our results confirm the RCB score as externally valid prognostic marker and being independent of molecular subtype for RFS and OS in a clinical setting.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/patología , Terapia Neoadyuvante/mortalidad , Recurrencia Local de Neoplasia/patología , Neoplasia Residual/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasia Residual/tratamiento farmacológico , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Tasa de Supervivencia
14.
Mol Cancer Res ; 17(2): 594-603, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30409919

RESUMEN

PROTOCADHERIN 7 (PCDH7), a transmembrane receptor and member of the Cadherin superfamily, is frequently overexpressed in lung adenocarcinoma and is associated with poor clinical outcome. Although PCDH7 was recently shown to promote transformation and facilitate brain metastasis in lung and breast cancers, decreased PCDH7 expression has also been documented in colorectal, gastric, and invasive bladder cancers. These data suggest context-dependent functions for PCDH7 in distinct tumor types. Given that PCDH7 is a potentially targetable molecule on the surface of cancer cells, further investigation of its role in tumorigenesis in vivo is needed to evaluate the therapeutic potential of its inhibition. Here, we report the analysis of novel PCDH7 gain- and loss-of-function mouse models and provide compelling evidence that this cell-surface protein acts as a potent lung cancer driver. Employing a Cre-inducible transgenic allele, we demonstrated that enforced PCDH7 expression significantly accelerates KrasG12D -driven lung tumorigenesis and potentiates MAPK pathway activation. Furthermore, we performed in vivo somatic genome editing with CRISPR/Cas9 in KrasLSL-G12D ; Tp53fl/fl (KP) mice to assess the consequences of PCDH7 loss of function. Inactivation of PCDH7 in KP mice significantly reduced lung tumor development, prolonged survival, and diminished phospho-activation of ERK1/2. Together, these findings establish a critical oncogenic function for PCDH7 in vivo and highlight the therapeutic potential of PCDH7 inhibition for lung cancer. Moreover, given recent reports of elevated or reduced PCDH7 in distinct tumor types, the new inducible transgenic model described here provides a robust experimental system for broadly elucidating the effects of PCDH7 overexpression in vivo. IMPLICATIONS: In this study, we establish a critical oncogenic function for PCDH7 in vivo using novel mouse models and CRISPR/Cas9 genome editing, and we validate the therapeutic potential of PCDH7 inhibition for lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Cadherinas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Cadherinas/deficiencia , Cadherinas/metabolismo , Carcinogénesis , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Protocadherinas , Transducción de Señal
15.
Genes Dev ; 32(13-14): 903-908, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950491

RESUMEN

Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of Dis3l2-null nephron progenitor cells, a potential cell of origin of Wilms tumors, reveals up-regulation of Igf2, a growth-promoting gene strongly associated with Wilms tumorigenesis. These findings nominate a new potential mechanism underlying the pathology associated with DIS3L2 deficiency.


Asunto(s)
Exorribonucleasas/genética , Macrosomía Fetal/genética , Factor II del Crecimiento Similar a la Insulina/genética , Regulación hacia Arriba , Tumor de Wilms/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/genética , Mutación , Nefronas/citología , Nefronas/fisiopatología , Células Madre
16.
J Lipid Res ; 59(3): 475-487, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29335275

RESUMEN

Lipogenesis in liver is highest in the postprandial state; insulin activates SREBP-1c, which transcriptionally activates genes involved in FA synthesis, whereas glucose activates carbohydrate-responsive element-binding protein (ChREBP), which activates both glycolysis and FA synthesis. Whether SREBP-1c and ChREBP act independently of one another is unknown. Here, we characterized mice with liver-specific deletion of ChREBP (L-Chrebp-/- mice). Hepatic ChREBP deficiency resulted in reduced mRNA levels of glycolytic and lipogenic enzymes, particularly in response to sucrose refeeding following fasting, a dietary regimen that elicits maximal lipogenesis. mRNA and protein levels of SREBP-1c, a master transcriptional regulator of lipogenesis, were also reduced in L-Chrebp-/- livers. Adeno-associated virus-mediated restoration of nuclear SREBP-1c in L-Chrebp-/- mice normalized expression of a subset of lipogenic genes, while not affecting glycolytic genes. Conversely, ChREBP overexpression alone failed to support expression of lipogenic genes in the livers of mice lacking active SREBPs as a result of Scap deficiency. Together, these data show that SREBP-1c and ChREBP are both required for coordinated induction of glycolytic and lipogenic mRNAs. Whereas SREBP-1c mediates insulin's induction of lipogenic genes, ChREBP mediates glucose's induction of both glycolytic and lipogenic genes. These overlapping, but distinct, actions ensure that the liver synthesizes FAs only when insulin and carbohydrates are both present.


Asunto(s)
Glucólisis , Lipogénesis , Hígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/deficiencia , Factores de Transcripción/deficiencia
17.
Elife ; 62017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144234

RESUMEN

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFß and PDGFRß in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses.


Asunto(s)
Aterosclerosis/patología , Colesterol/metabolismo , Homeostasis , Inflamación/patología , Macrófagos/inmunología , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Receptores de LDL/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
18.
Cancer Discov ; 7(8): 900-917, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28473526

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by BAP1 and PBRM1 mutations, which are associated with tumors of different grade and prognosis. However, whether BAP1 and PBRM1 loss causes ccRCC and determines tumor grade is unclear. We conditionally targeted Bap1 and Pbrm1 (with Vhl) in the mouse using several Cre drivers. Sglt2 and Villin proximal convoluted tubule drivers failed to cause tumorigenesis, challenging the conventional notion of ccRCC origins. In contrast, targeting with PAX8, a transcription factor frequently overexpressed in ccRCC, led to ccRCC of different grades. Bap1-deficient tumors were of high grade and showed greater mTORC1 activation than Pbrm1-deficient tumors, which exhibited longer latency. Disrupting one allele of the mTORC1 negative regulator, Tsc1, in Pbrm1-deficient kidneys triggered higher grade ccRCC. This study establishes Bap1 and Pbrm1 as lineage-specific drivers of ccRCC and histologic grade, implicates mTORC1 as a tumor grade rheostat, and suggests that ccRCCs arise from Bowman capsule cells.Significance: Determinants of tumor grade and aggressiveness across cancer types are poorly understood. Using ccRCC as a model, we show that Bap1 and Pbrm1 loss drives tumor grade. Furthermore, we show that the conversion from low grade to high grade can be promoted by activation of mTORC1. Cancer Discov; 7(8); 900-17. ©2017 AACR.See related commentary by Leung and Kim, p. 802This article is highlighted in the In This Issue feature, p. 783.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas HMGB/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Animales , Carcinogénesis/genética , Carcinoma de Células Renales/patología , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Ratones , Proteínas de Microfilamentos/genética , Mutación , Pronóstico , Transportador 2 de Sodio-Glucosa/genética , Factores de Transcripción
19.
Comp Med ; 67(2): 101-105, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381309

RESUMEN

Reproducibility in animal studies has been defined as the ability of a result to be replicated through independent experiments within the same or among different laboratories. Over the past few years, much has been written and said about the lack of reproducibility of animal studies. Reasons that are commonly cited for this lack of reproducibility include inappropriate study design, errors in conducting the research, and potential fraud. In the quest to understand the basis for this lack of reproducibility, scientists have not fully considered the potential ramifications on ethical constructs for animal research, animal welfare considerations in animal research programs, the regulatory environment, and oversight by IACUCs. Here, we review how ethical theories behind animal research, policies, and practices meant to enhance animal welfare and the IACUC oversight process influence the reproducibility of animal studies, a previously undiscussed topic in the peer-reviewed literature.


Asunto(s)
Bienestar del Animal/ética , Reproducibilidad de los Resultados , Bienestar del Animal/normas , Proyectos de Investigación
20.
Elife ; 62017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28244871

RESUMEN

The synthesis of cholesterol and fatty acids (FA) in the liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here, we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in the liver. Surprisingly, we found that elimination of Srebf-2 in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c. The nuclear receptor LXR is necessary for Srebf-1c transcription. The deletion of Srebf-2 and subsequent lower sterol synthesis in hepatocytes eliminated the production of an endogenous sterol ligand required for LXR activity and SREBP-1c expression. These studies demonstrate that cholesterol and FA synthesis in hepatocytes are coupled and that flux through the cholesterol biosynthetic pathway is required for the maximal SREBP-1c expression and high rates of FA synthesis.


Asunto(s)
Regulación de la Expresión Génica , Receptores X del Hígado/metabolismo , Hígado/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...