Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 88: 102416, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796863

RESUMEN

BACKGROUND: High-grade urothelial carcinoma either non-Schistosoma (NS-UBC) or Schistosoma (S-UBC)-associated is the tenth cause of death worldwide and represents a serious therapeutic problem. AIM: Evaluation of the immmunohistochemical expression of tumor necrosis factor-alpha (TNFα), epidermal growth factor receptor (EGFR), programmed cell death protein-1 (PDL1), estrogen receptor-alpha (ERα) and UroplakinIII, in the high-grade in NS-UBC and S-UBC as potential prognostic and therapeutic targets analyzed through estimation of area percentage, optical density and international pathological scoring system for each marker. MATERIAL AND METHODS: Sixty high grade urothelial carcinoma cases were enrolled in the study (30 cases of NS-UBC and 30 cases of S-UBC). The cases were immunohistochemically-assessed for TNFα, EGFR, PDL1, ERα and Uroplakin III expression. In S-UBC, parasite load was also evaluated for correlation with the immunohistochemical markers' expression in S-UBC. RESULTS: The area percentage of immune-expression of TNFα and EGFR was higher in S-UBC compared to NS-UBC. On the other hand, the NS-UBC displayed statistically-higher expression of PDL1 and uroplakinIII (p-value <0.001). ERα revealed higher, yet, non-significant expressions in S-UBC compared to NS-UBC (p-value =0.459). PDL1 expression showed the most superior record regarding area percentage (64.6± 34.5). Regarding optical density, TNF-α showed the highest transmittance expression (2.4 ± 0.9). EGFR positively correlated with PDL1 in S-UBC (r= 0.578, p-value =0.001) whereas in NS-UBC, TNFα and PDL1 (r=0.382, p-value=0.037) had positive correlation. Schistosoma eggs in tissues oppose uroplakin III expression and trigger immunomodulation via PDL1. CONCLUSION: Due to lower UroplakinIII expression, S-UBC is supposed to have a poorer prognosis. Hormonal therapy is not hypothesized due to a very minimal ERα expression in both NS-UBC and S-UBC. Regarding immunotherapy, anti-TNF-α is suggested for S-UBC whilst in NS-UBC, blockading PDL1 might be useful. Targeted EGFR therapy seems to carry emphasized outcomes in S-UBC. Correlations encourage combined immune therapy in NS-UBC; nevertheless, in S-UBC, combined anti-EGFR and PDL1 seem to be of benefit.


Asunto(s)
Biomarcadores de Tumor , Humanos , Masculino , Femenino , Biomarcadores de Tumor/metabolismo , Animales , Persona de Mediana Edad , Anciano , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/parasitología , Neoplasias de la Vejiga Urinaria/patología , Receptores ErbB/metabolismo , Schistosoma/metabolismo , Antígeno B7-H1/metabolismo , Esquistosomiasis/parasitología , Esquistosomiasis/metabolismo , Receptor alfa de Estrógeno/metabolismo , Urotelio/patología , Urotelio/metabolismo , Urotelio/parasitología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Pharmaceuticals (Basel) ; 16(5)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37242480

RESUMEN

The pathogenesis of pulmonary fibrosis (PF) is extremely complex and involves numerous intersecting pathways. The successful management of PF may require combining multiple agents. There is a growing body of evidence that suggests the potential benefits of niclosamide (NCL), an FDA-approved anthelminthic drug, in targeting different fibrogenesis molecules. This study aimed at investigating the anti-fibrotic potential of NCL alone and in combination with pirfenidone (PRF), an approved drug for PF, in a bleomycin (BLM) induced PF experimental model. PF was induced in rats by intratracheal BLM administration. The effect of NCL and PRF individually and in combination on different histological and biochemical parameters of fibrosis was investigated. Results revealed that NCL and PRF individually and in combination alleviated the histopathological changes, extracellular matrix deposition and myofibroblastic activation induced by BLM. NCL and PRF either individually or in combination inhibited the oxidative stress and subsequent pathways. They modulated the process of fibrogenesis by inhibiting MAPK/NF-κB and downstream cytokines. They inhibited STATs and downstream survival-related genes including BCL-2, VEGF, HIF-α and IL-6. Combining both drugs showed significant improvement in the tested markers in comparison to the monotherapy. NCL, therefore, has a potential synergistic effect with PRF in reducing the severity of PF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...