Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Dent J ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38849287

RESUMEN

INTRODUCTION AND AIMS: The gaps at the margins of restorative composite resin can increase as the carious process occurs underneath the materials, causing further demineralization along the tooth cavity wall. The aim of this study was to evaluate the effects of restorative resin composite containing hydrated calcium silicate (hCS) filler on enamel protection against demineralization by simulating microleakage between the test material and teeth in a cariogenic environment. METHODS: The experimental resin composites were composed of 70 wt.% filler, which was mixed with a glass filler and hCS in a weight ratio of 70.0% glass (hCS 0), 17.5% hCS + 52.5% glass (hCS 17.5), 35.0% hCS + 35.0% glass (hCS 35.0), and 52.5% hCS + 17.5% glass (hCS 52.5). A light-cured experimental resin composite disk was positioned over a polished bovine enamel disk, separated by a 30-µm gap, and immersed in artificial saliva with pH 4.0 for 15, 30, and 60 days. After the immersion period, the enamel disk was separated from the resin composite disk and evaluated using a microhardness tester, atomic force microscopy, and polarized light microscopy. The opposing sides of the enamel and resin composite disks were observed using scanning electron microscopy/energy dispersive X-ray spectrometry. RESULTS: The enamel surface showed a significant increase in microhardness, decreased roughness, and remineralization layer as the proportion of hCS increased (P < .05). In the scanning electron microscopy image, the enamel surface with hCS 35.0 and 52.5 after all experimental immersion periods, showed a pattern similar to that of a sound tooth. CONCLUSIONS: The results demonstrated that increasing the hCS filler level of restorative resin composites significantly decreased enamel demineralization. CLINICAL RELEVANCE: Hydrated calcium silicate laced restorative resin composites may be a promising dental biomaterial for protecting teeth against demineralization and preventing secondary caries around restorations.

2.
Biomater Res ; 27(1): 25, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36978203

RESUMEN

BACKGROUND: White Portland cement is a calcium silicate material. It exhibits antibacterial properties and is biocompatible. In addition, calcium silicate-based materials are known to release calcium ions and form apatite. The purpose of this study was to develop a novel bioactive restorative resin composite with antibacterial and apatite forming properties to prevent tooth caries at the interface of teeth and restorative materials, by incorporation of hydrated calcium silicate (hCS) derived from white Portland cement. METHODS: To prepare the experimental composite resins, a 30 wt% light-curable resin matrix and 70 wt% filler, which was mixed with hCS and silanized glass powder were prepared in following concentrations: 0, 17.5, 35.0, and 52.5 wt% hCS filler. The depth of cure, flexural strength, water sorption, solubility, and antibacterial effect were tested. After immersion in artificial saliva solution for 15, 30, 60, and 90 days, ion concentration by ICP-MS and apatite formation using SEM-EDS, Raman spectroscopy and XRD from experimental specimens were analyzed. RESULTS: All experimental groups showed clinically acceptable depths of cure and flexural strength for the use as the restorative composite resin. Water sorption, solubility, released Ca and Si ions increased with the addition of hCS to the experimental composite resin. Experimental groups containing hCS showed greater antibacterial effects compared with the 0 wt% hCS filler group (p < 0.05). The 52.5 wt% hCS filler group produced precipitates mainly composed of Ca and P detected as hydroxyapatite after immersion in artificial saliva solution for 30, 60, and 90 days. CONCLUSIONS: This results show that composite resins containing hCS filler is effective in antibacterial effects. hCS has also apatite formation ability for reducing gap size of microleakage by accumulating hydroxyapatite precipitates at the restoration-tooth interface. Therefore, novel composite resin containing hCS is promising bioactive resin because of its clinically acceptable physiochemical properties, antibacterial properties, and self-sealing potential for prevention of microleakage for longer usage of restorations.

3.
J Dent ; 123: 104204, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724940

RESUMEN

OBJECTIVES: The objective of this study was to evaluate an orthodontic adhesive containing hydrated calcium silicate (hCS) in terms of its bond strength with the enamel surface and its acid-neutralization and apatite-forming abilities. METHODS: The experimental orthodontic adhesives were composed of 30 wt.% resin matrix and 70 wt.% filler, which itself was a mixture of silanized glass filler and hCS in weight ratios of 100% glass filler (hCS 0), 17.5% hCS (hCS 17.5), 35% hCS (hCS 35.0), and 52.5% hCS (hCS 52.5). The degree of conversion (DC) and shear bond strength (SBS) of bovine enamel surfaces were tested. pH measurements were performed immediately upon submersion of the specimens in a lactic acid solution. The surface precipitates that formed on specimens immersed in phosphate-buffered saline (PBS) were analyzed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and Raman spectroscopy after 15, 30, and 90 days. RESULTS: The experimental groups exhibited no significant differences in DC and had clinically acceptable SBS values. The hCS-containing groups showed increasing pH values as more hCS was added. hCS 52.5 produced Ca- and P-containing surface precipitates after PBS immersion, and hydroxyapatite deposition was detected after 15, 30, and 90 days. CONCLUSIONS: These results suggest that orthodontic adhesives containing hCS are effective for acid neutralization. Furthermore, hCS has an apatite-forming ability for enamel remineralization. CLINICAL SIGNIFICANCE: The novel orthodontic adhesive containing hCS exhibits a potential clinical benefit against demineralization and enhanced remineralization of the enamel surface around or beneath the orthodontic brackets.


Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Animales , Apatitas , Compuestos de Calcio , Bovinos , Recubrimiento Dental Adhesivo/métodos , Cementos Dentales/química , Ensayo de Materiales , Cementos de Resina/química , Resistencia al Corte , Silicatos , Propiedades de Superficie
4.
Clin Oral Investig ; 26(8): 5301-5312, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35459971

RESUMEN

OBJECTIVES: This study aimed to evaluate the effects of 30% hydrogen peroxide (HP) solution containing various contents of 45S5 bioactive glass (BAG) on whitening efficacy and enamel surface properties after simulating the clinical bleaching procedure. MATERIALS AND METHODS: A total of 60 bovine enamel specimens discolored with black tea were divided into five groups treated with distilled water (DW), HP, 0.01 wt.% BAG + HP, 1.0 wt.% BAG + HP, and 20.0 wt.% BAG + HP (n = 12). The pH change was observed for 20 min immediately after mixing the experimental solutions, which were applied for 20 min/week, at 37 °C over 21 days. Color, gloss, roughness, microhardness, and micromorphology measurements were conducted before and after bleaching treatment. RESULTS: All groups containing BAG experienced an increase in pH from 3.5 to 5.5 in less than 1 min, and the final pH increased as the BAG content increased. The ΔE of all experimental groups was significantly higher than that of the DW group (p < 0.05), but there were no significant differences between different BAG contents (p > 0.05). Gloss significantly decreased in all experimental groups compared to the DW group, and the increased BAG content had significantly affected the decrease in gloss (p < 0.05). There was no statistical difference in surface roughness (p > 0.05), but hardness increased significantly with BAG content after bleaching treatment (p < 0.05). CONCLUSIONS: HP containing 45S5 BAG showed efficacy in tooth whitening. Also, the pH value of the HP remained acidic near 3.5 for 20 min, while the HP containing the 45S5 BAG showed an increase in pH, which inhibited the demineralization of the enamel surface, and maintained the surface morphology. CLINICAL RELEVANCE: These novel materials are promising candidates to minimize enamel surface damage caused by HP during bleaching procedure in dental clinic.


Asunto(s)
Blanqueadores Dentales , Blanqueamiento de Dientes , Animales , Bovinos , Esmalte Dental , Dureza , Peróxido de Hidrógeno/química , Propiedades de Superficie , Blanqueamiento de Dientes/métodos , Blanqueadores Dentales/química , Blanqueadores Dentales/farmacología
5.
Bone ; 138: 115497, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32599221

RESUMEN

Adult bone homeostasis requires a fine-tuned balance between the activity of osteoblasts and osteoclasts. This osteoblast-osteoclast coupling is therapeutically important because it limits the efficacy of most anabolic or anti-resorptive treatments for osteoporosis. Sirtuin6 (SIRT6), a histone deacetylase, was implicated recently as an important regulator in bone homeostasis, but its in vivo function in osteoblast lineage cells remains unclear, mainly due to a lack of in vivo experiments with osteoblast lineage-specific Sirt6 knockout mice. Here, we show that Sirt6 in mature osteoblasts and/or osteocytes inhibits osteoclastogenesis via a paracrine mechanism. We found that osteoblast/osteocyte-specific Sirt6 knockout mice show reduced bone mass due to increased osteoclast formation. Mechanistically, we attribute this increased osteoclastogenesis to decreased osteoprotegerin expression in Sirt6-null osteoblasts and osteocytes. This loss of Sirt6 in osteoblasts and osteocytes does not, however, alter bone formation parameters in vivo. It does accelerate osteogenic differentiation in ex vivo culture, indicating that the osteoblast/osteocyte-autonomous functions of SIRT6 have minor effects on the osteopenic phenotype. These results establish a critical role for SIRT6 in mature osteoblasts and osteocytes in adult bone homeostasis as a negative paracrine regulator of osteoclastogenesis.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoclastos , Sirtuinas , Animales , Diferenciación Celular , Ratones , Osteoblastos , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...