Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(17): 7966-7972, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38620044

RESUMEN

Hybrid ferroelastic crystals have emerged as a hot research topic in recent years owing to their prospective applications in piezoelectric sensors, mechanical switches, and optoelectronic devices. Nevertheless, most of the documented materials exhibit one-step or two-step ferroelastic phase transition(s), and those with multistep ferroelastic transitions are extremely scarce. We present a new hexagonal molecular perovskite based on a fluoro-substituted flexible cyclic ammonium cation, (1-fluoromethyl-1-methylpyrrolidine)[CdCl3] (1), undergoing unusual three-step ferroelastic phase transitions from hexagonal paraelastic phase to orthorhombic, monoclinic, and triclinic ferroelastic phases at 388, 376, and 311 K, respectively, with Aizu notation of 6/mmmFmmm, mmmF2/m, and 2/mF-1, featuring spontaneous strain of 0.002, 0.023, and 0.110, respectively. Furthermore, variable-temperature single-crystal diffraction reveals that the phase-transition mechanism in 1 principally originates from intriguing dynamic change of organic cations and synchronous displacement of inorganic chains. This scarce instance of multistep hybrid ferroelastic provides important clues for finding advanced ferroelastic materials.

2.
Dalton Trans ; 52(33): 11518-11525, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37539870

RESUMEN

Organic-inorganic hybrid metal halides for high-temperature phase transition have become increasingly popular owing to their wide operating temperature range in practical applications, e.g., energy storage, permittivity switches and opto-electronic devices. This paper describes the subtle assembly of two new hybrid perovskite crystals, [Cl-C6H4-(CH2)2NH3]2CdX4 (X = Br 1; Cl 2), undergoing high-T reversible phase transformations around 335 K/356 K. Differential scanning calorimetry (DSC), differential thermal analysis (DTA) and VT PXRD tests uncover their reversible first-order phase transition behaviors. Furthermore, the compounds exhibit switchable dielectricity near T, making them potential dielectric switching materials. Hirshfeld surface analysis well discloses a distinct difference in hydrogen-bonding interaction between 1 and 2. UV spectra and computational analysis demonstrate that the compounds are a type of direct-band-gap semiconductor. This research will contribute an effective approach to the structure and development of multifunctional molecular hybrid crystals.

3.
Inorg Chem ; 60(24): 18918-18923, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34872246

RESUMEN

A novel organic-inorganic hybrid perovskite crystal, [ClC6H4(CH2)2NH3]2CuBr4 (1), having experienced an invertible high-temperature phase transition near Tc (the Curie temperature Tc = 355 K), has been successfully synthesized. The phase-transition characteristics for compound 1 are thoroughly revealed by specific heat capacity (Cp), differential thermal analysis, and differential scanning calorimetry tests, possessing 16 K broad thermal hysteresis. Multiple-temperature powder X-ray diffraction analysis further proves the phase-transition behavior of compound 1. Moreover, compound 1 exhibits a significant steplike dielectric response near Tc, revealing that it can be deemed to be a promising dielectric switching material. The variable-temperature fluorescence experiments show distinct photoluminescence (PL) changes of compound 1. Further investigation and calculation disclose that the fluorescence lifetime of compound 1 can reach as long as 55.46 µs, indicating that it can be a potential PL material. All of these researches contribute a substitutable avenue in the design and construction of neoteric phase-transition compounds combining high Curie temperature and PL properties.

4.
Chem Sci ; 12(39): 13061-13067, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34745536

RESUMEN

Low-dimensional chiral organic-inorganic hybrid metal halides have attracted a lot of attention in recent years due to their unique intrinsic properties, including having potential applications in optoelectronic and spintronic devices. However, low-dimensional chiral molecular ferroelectrics are very rare. In this paper, we report a novel zero-dimensional molecular ferroelectric (C9H14N)2CdBr4 (C9H14N+ = protonated 3-phenylpropylamine), which has obvious dielectric and thermal anomalies and shows a high Curie temperature at 395 K. It crystallizes in the P21 space group at room temperature, showing a strong CD signal, large spontaneous polarization (P s = 13.5 µC cm-2), and a clear ferroelectric domain. In addition, it also exhibits a flexible SHG response. The photoluminescence spectrum shows that 1 has broadband luminescence. At the same time, compound 1 has a wide band gap, which is mainly contributed to by the inorganic CdBr4 tetrahedron. The high tunability of low-dimensional chiral molecular ferroelectrics also opens up a way to explore multifunctional chiral materials.

5.
Chem Commun (Camb) ; 57(85): 11225-11228, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34633013

RESUMEN

A novel chromium(VI)-based compound, [(CH3CH2)3N(CH2Cl)][CrO3Cl] (1), undergoes a high-temperature phase transition at around 340.9 K, accompanied by an ultra-large entropy change of 63.49 J mol-1 K-1. Compound 1 exhibits a moderate ferroelectric polarization of 0.48 µC cm-2 and a remarkable CD signal. Strikingly, 1 occupies a narrow band gap of 2.22 eV, which is chiefly attributed to the inorganic [CrO3Cl]- tetrahedron. It is believed that these findings will contribute to an alternative pathway for the design of multifunctional ferroelectric materials, whose potential applications will be in semiconductors, energy storage, etc.

6.
Chemistry ; 27(63): 15716-15721, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498317

RESUMEN

The multifunctional two-dimensional (2D) organic-inorganic hybrid perovskites have potential applications in many fields, such as, semiconductor, energy storage and fluorescent device etc. Here, a 2D Ruddlesden-Popper (RP) perovskite (IPA)2 (FA)Pb2 I7 (1, IPA+ =C3 H9 NI+ , FA+ =CN2 H5 + ) is determined for its photophysical properties. Strikingly, 1 reveals a solid reversible phase transition with Tc of 382 K accompanied by giant entropy change of 40 J mol-1 K-1 . Further optical investigations indicate that 1 reveals a narrow direct bandgap (2.024 eV) attributed to the slight bending of I-Pb-I edge and inorganic [Pb2 I7 ]n layer and a superior photoluminescence (PL) emission with super long lifetime of 0.1607 ms. It is believed that this work will pave an avenue to further design multifunctional semiconductors that combines energy storage and photoelectric materials.

7.
Chemistry ; 27(54): 13575-13581, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34322911

RESUMEN

Molecular ferroelectrics of high-temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high-temperature host-guest inclusion ferroelectric: [(C6 H5 NF3 )(18-crown-6)][BF4 ] (1) that shows a pair of reversible peaks at 348 K (heating) and 331 K (cooling) with a heat hysteresis about 17 K by differential scanning calorimetry measurements, thus indicating that 1 undergoes a reversible structural phase transition. Variable-temperature PXRD and temperature-dependent dielectric measurements further prove the phase-transition behavior of 1. The second harmonic response demonstrates that 1 belongs to a non-centrosymmetric space group at room temperature and is a good nonlinear optical material. In its semiconducting properties, 1 shows a wide optical band gap of about 4.43 eV that comes chiefly from the C, H and O atoms of the crystals. In particular, the ferroelectric measurements of 1 exhibit a typical polarization-electric hysteresis loop with a large spontaneous polarization (Ps ) of about 4.06 µC/cm2 . This finding offers an alternative pathway for designing new ferroelectric-dielectric and nonlinear optical materials and related physical properties in organic-inorganic and other hybrid crystals.

8.
Inorg Chem ; 60(2): 1195-1201, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33356190

RESUMEN

Due to the existence of some cross properties such as SHG (second-harmonic generation), ferroelectricity, piezoelectricity, and thermoelectricity, molecular ferroelectrics have been widely used as a composite multipurpose material. Particularly, organic-inorganic molecular ferroelectrics have received much interest recently because of their unique flexible structures, friendly environment, ease of synthesis, etc. Also, these hybrids show great flexibility in band-gap engineering. Here we report a new molecular halide, [C6H13N3SbBr5]n (1; C6H13N3 = 1-(3-aminopropyl)imidazole), which experiences a unique ferroelectric to paraelectric phase transition at around 230 K from space group P21 to P21/c. Significantly, compound 1 exhibits a narrow band gap with a value of 2.52 eV, large pronounced SHG-active, perfect rectangle hysteresis loops with a large spontaneous polarization of 6.86 µC/cm2. DSC (differential scanning calorimetry) and dielectric dependence on temperature tests and the volume change before and after the phase transition show that compound 1 is characterized by a second-order phase transition. These findings will contribute to the multifunctional materials field of organic-inorganic hybrids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...