Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Front Oncol ; 14: 1356250, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515581

RESUMEN

The serrated pathway to colorectal cancers (CRCs) is a significant pathway encompassing five distinct types of lesions, namely hyperplastic polyps (HPs), sessile serrated lesions (SSLs), sessile serrated lesions with dysplasia (SSL-Ds), traditional serrated adenomas (TSAs), and serrated adenoma unclassified. In contrast to the conventional adenoma-carcinoma pathway, the serrated pathway primarily involves two mechanisms: BRAF/KRAS mutations and CpG island methylator phenotype (CIMP). HPs are the most prevalent non-malignant lesions, while SSLs play a crucial role as precursors to CRCs, On the other hand, traditional serrated adenomas (TSAs) are the least frequently encountered subtype, also serving as precursors to CRCs. It is crucial to differentiate these lesions based on their unique morphological characteristics observed in histology and colonoscopy, as the identification and management of these serrated lesions significantly impact colorectal cancer screening programs. The management of these lesions necessitates the crucial steps of removing premalignant lesions and implementing regular surveillance. This article provides a comprehensive summary of the epidemiology, histologic features, molecular features, and detection methods for various serrated polyps, along with recommendations for their management and surveillance.

2.
Scars Burn Heal ; 10: 20595131241230739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385064

RESUMEN

Introduction: Postburn scarring often presents a specific reconstructive challenge from both functional and cosmetic perspectives. The purpose of this study was to investigate whether autologous nanofat harvested from the donor site of full skin or a skin flap can be reused for the treatment of early postburn scaring. Methods: From July 2018 to April 2022, patients with early postburn scarring underwent scar reconstruction surgery with full-thickness skin or a skin flap for a contour deformity and/or scar contracture, and autologous nanofat grafting was performed during the same operation. The Vancouver Scar Score (VSS) and the itch and pain scores were evaluated at the preoperation time point as well as at 2-3 weeks and 3-months postoperation. A comparison was made among the same patients at different time points. Results: A total of 17 patients, aged from 18 months to 62 years old were included in this analysis. The VSS was reduced from 10.00 ± 2.12 to 7.41 ± 1.277 at the 2-3-week postoperation time point, and to 5.53 ± 1.37 at the 3-month postoperation time point. The pain and itch score were reduced from 4.65 ± 1.37 and 6.35 ± 1.27, to 3.70 ± 1.10 and 4.94 ± 1.30 at the 2-3-week postoperation time point, and to 3.00 ± 1.28 and 3.94 ± 0.97 at the 3-month postoperation time point respectively. The VSS and pain and itch scores showed a statistically significant reduction (P < 0.05) at the 2-3-week and 3-month postoperative follow-ups compared with the preoperation time point. Conclusion: Autologous nanofat grafting from donor sites of full thickness skin or skin flap may be a promising treatment for an early postburn scaring as it promotes scar softening, improves itching and pain within the scar. However, this is a small case series with only 17 patients. Further conclusions need to be drawn through expanded samples for randomized controlled clinical trials. Lay Summary: Hypertrophic scarring is the most common complication after partial thickness burn injury, and the complex pathogenesis and prolonged dynamic process render treatments only marginally effective. In the past few decades, with the technological advances of liposuction and fat grafting, nanofat grafting has been used in a variety of surgical fields, including wound healing, scleroderma, facial rejuvenation, and neuralgia. However, the role of nanofat grafting is not well documented in the prevention and treatment of early postburn scarring. Full-thickness skin grafting or skin flap transplantation is the most common method for the reconstruction of a hypertrophic scaring until now. In the current study, we harvested subcutaneous fat during the preparation of the full-thickness skin or skin flap, prepared nanofat and injected it in the scar located at a nonsurgical site. Comparison of the pre- and postoperation scores for scar color, scar thickness, scar stiffness, and scar regularity showed that the postoperation scores were decreased significantly and that there was a significant improvement in scar pigmentation and thickness as well astheaesthetic outcome after treatment. Most importantly, reductions in the scores for pain and itching could be assessed objectively. It seems that the nanofat grafting is a potential method for prevention and treatment for early postburn scaring.

3.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242263

RESUMEN

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Asunto(s)
Carpas , Ferroptosis , Bifenilos Polibrominados , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Antioxidantes/metabolismo , Receptor Toll-Like 4/genética , Carpas/metabolismo , Branquias , Polifenoles/farmacología , Polifenoles/metabolismo , Transducción de Señal , Proteínas de Peces , Inflamación/inducido químicamente , Inflamación/veterinaria , Inflamación/metabolismo , Apoptosis , Té/metabolismo
4.
Aquat Toxicol ; 265: 106780, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38041969

RESUMEN

Microplastics (MPs) are widely distributed pollutants in the environment and accumulate in the aquatic environment due to human activities. Carp, a common edible aquatic organism, has been found to accumulate MPs in body. MicroRNA (miRNAs) is a non-coding short RNA that regulates protein expression by binding to target genes in various physiological processes such as proliferation, differentiation and apoptosis. The ovary is a crucial role in carp reproduction. In this study, we established a model of carp exposed to polyethylene microplastics (PE-MPs) in the aquatic environment to investigate the specific mechanism of PE-MPs causing ovarian injury and the involvement of miR-132/calpain (CAPN) axis. H&E stained sections revealed that PE-PMs induced inflammation in ovarian tissues and impaired oocyte development. TUNEL analysis showed an increased rate of apoptosis in ovarian cells treated with PE-PMs. RT-PCR and Western Blot assays confirmed that exposure to PE-MPs significantly decreased miR-132 expression while increasing CAPN expression at both mRNA and protein levels. The concentration of calcium ions was significantly increased in tissues, leading to CAPN enzyme activity increase. The expression of mitochondrial damage-related genes (bax, AIF, cyt-c, caspase-7, caspase-9, and caspase-3) was higher while the expression of anti-apoptotic genes (bcl-2 and bcl-xl) was lower. Protein levels of bax, AIF, caspase-3, bcl-2 and bcl-xl changed accordingly with the genetic alterations. Additionally, we discovered that PE-MPs can activate the p65 factor through the TRAF6/NF-kB pathway resulting in elevated production of pro-inflammatory factors IL-6, IL-1ß and TNF-a which contribute to ovarian inflammation development. This study investigates the impact of PE-MPs on carp ovarian function and provides insights into miRNAs' role and their target genes.


Asunto(s)
Carpas , MicroARNs , Contaminantes Químicos del Agua , Animales , Femenino , Humanos , Microplásticos , Polietileno , Caspasa 3/genética , Plásticos , Calpaína , Proteína X Asociada a bcl-2 , Ovario , Contaminantes Químicos del Agua/toxicidad , Proteínas Proto-Oncogénicas c-bcl-2/genética , MicroARNs/genética , Apoptosis/genética , Inflamación/inducido químicamente
5.
Hortic Res ; 10(12): uhad232, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143485

RESUMEN

Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (Fragaria vesca) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in FvePhyB leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the FvePhyB mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The srl mutant with a longer internode is caused by a mutation in the DELLA gene FveRGA1 (Repressor of GA1) in the gibberellin pathway. We found that the P8 srl double mutant has much longer internodes than srl, suggesting a synergistic role of FvePhyB and FveRGA1 in this process. Taken together, these results demonstrate the important role of FvePhyB in regulating plant architecture and anthocyanin content in woodland strawberry.

6.
J Vis Exp ; (199)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37747219

RESUMEN

Leptomeningeal lymphatic endothelial cells (LLECs) are a recently discovered intracranial cellular population with a unique distribution clearly distinct from peripheral lymphatic endothelial cells. Their cellular function and clinical implications remain largely unknown. Consequently, the availability of a supply of LLECs is essential for conducting functional research in vitro. However, there is currently no existing protocol for harvesting and culturing LLECs in vitro. This study successfully harvested LLECs using a multi-step protocol, which included coating the flask with fibronectin, dissecting the leptomeninges with the assistance of a microscope, enzymatically digesting the leptomeninges to prepare a single-cell suspension, inducing the expansion of LLECs with vascular endothelial growth factor-C (VEGF-C), and selecting lymphatic vessel hyaluronic receptor-1 (LYVE-1) positive cells through magnetic-activated cell sorting (MACS). This process ultimately led to the establishment of a primary culture. The purity of the LLECs was confirmed through immunofluorescence staining and flow cytometric analysis, with a purity level exceeding 95%. This multi-step protocol has demonstrated reproducibility and feasibility, which will greatly facilitate the exploration of the cellular function and clinical implications of LLECs.


Asunto(s)
Células Endoteliales , Factor C de Crecimiento Endotelial Vascular , Reproducibilidad de los Resultados , Separación Celular , Citometría de Flujo
7.
J Org Chem ; 88(17): 12224-12235, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561550

RESUMEN

An efficient method for the synthesis of 1-hydroxy-2,5-dihydrophosphole 1-oxides, a type of five-membered P-containing heterocyclic compound, is presented. The reaction was carried out through a [4C+1P] cyclization of 1,3-dienes with a combination of PBr3 and P(OMe)3 as the P(III) source. To compare with the reported methods, the protocol reported herein not only is much milder and more rapid but also displays a broad substrate scope and affords the products in high yields (50-94%). In addition, the reaction could be reliably scaled up at the gram-scale level and was demonstrated to be a versatile platform for flexible derivatization. Consequently, this method provides a general and reliable way for the synthesis of five-membered phosphole derivatives.

8.
J Vis Exp ; (198)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37607103

RESUMEN

Pericytes are crucial mural cells situated within cerebral microcirculation, pivotal in actively modulating cerebral blood flow via contractility adjustments. Conventionally, their contractility is gauged by observing morphological shifts and nearby capillary diameter changes under specific circumstances. Yet, post-tissue fixation, evaluating vitality and ensuing pericyte contractility of imaged brain pericytes becomes compromised. Similarly, genetically labeling brain pericytes falls short in distinguishing between viable and non-viable pericytes, particularly in neurologic conditions like subarachnoid hemorrhage (SAH), where our preliminary investigation validates brain pericyte demise. A reliable protocol has been devised to surmount these constraints, enabling simultaneous fluorescent tagging of both functional and non-functional brain pericytes in brain sections. This labeling method allows high-resolution confocal microscope visualization, concurrently marking the brain slice microvasculature. This innovative protocol offers a means to appraise brain pericyte contractility, its impact on capillary diameter, and pericyte structure. Investigating brain pericyte contractility within the SAH context yields insightful comprehension of its effects on cerebral microcirculation.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Pericitos , Encéfalo , Diagnóstico por Imagen , Circulación Cerebrovascular
9.
Arch Biochem Biophys ; 743: 109645, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37225009

RESUMEN

Deep second-degree burns heal slowly, and promoting the healing process is a focus of clinical research. Sestrin2 is a stress-inducible protein with antioxidant and metabolic regulatory effects. However, its role during acute dermal and epidermal re-epithelialization in deep second-degree burns is unknown. In this study, we aimed to explore the role and molecular mechanism of sestrin2 in deep second-degree burns as a potential treatment target for burn wounds. To explore the effects of sestrin2 on burn wound healing, we established a deep second-degree burn mouse model. Then we detected the expression of sestrin2 by western blot and immunohistochemistry after obtaining the wound margin of full-thickness burned skin. The effects of sestrin2 on burn wound healing were explored in vivo and in vitro through interfering sestrin2 expression using siRNAs or the small molecule agonist of sestrin2, eupatilin. We also investigated the molecular mechanism of sestrin2 in promoting burn wound healing by western blot and CCK-8 assay. Our in vivo and in vitro deep second-degree burn wound healing model demonstrated that sestrin2 was promptly induced at murine skin wound edges. The small molecule agonist of sestrin2 accelerated the proliferation and migration of keratinocytes, as well as burn wound healing. Conversely, the healing of burn wounds was delayed in sestrin2-deficient mice and was accompanied by the secretion of inflammatory cytokines as well as the suppression of keratinocyte proliferation and migration. Mechanistically, sestrin2 promoted the phosphorylation of the PI3K/AKT pathway, and inhibition of PI3K/AKT pathway abrogated the promoting role of sestrin2 in keratinocyte proliferation and migration. Therefore, sestrin2 plays a critical role in activation of the PI3K/AKT pathway to promote keratinocyte proliferation and migration, as well as re-epithelialization in the process of deep second-degree burn wound repair.


Asunto(s)
Quemaduras , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piel/metabolismo , Cicatrización de Heridas
10.
Pharmgenomics Pers Med ; 16: 373-379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091828

RESUMEN

Background: We report the genetic etiology of a case of bilateral vocal cord paralysis in a female infant. Case Description: The female infant developed dyspnea after birth, which improved with treatment, allowing her to be discharged from the local hospital. At 2 months of age, the child experienced a recurrence of dyspnea and was treated in a local hospital with interventions such as tracheal intubation and mechanical ventilation. However, as the child continued to suffer from dyspnea, she was transferred to the neonatal intensive care unit of the Children's Hospital affiliated to Zhengzhou University for further treatment. A second electronic nasopharyngoscopy examination revealed bilateral vocal cord paralysis. The child underwent a tracheostomy due to a failure to wean from mechanical ventilation; after surgery, the respirator was effectively removed, and oxygen delivery ceased. The child and her parents underwent genetic testing with next-generation sequencing technology, which revealed that the child had two heterozygous variants in the MUSK gene, namely the c.2287G>A heterozygous mutation (p.Ala763Thr) and the c.790C>T heterozygous mutation. In addition, Sanger sequencing was performed, which confirmed that these two mutations were, respectively, inherited from the mother and father. Conclusion: Congenital myasthenic syndrome caused by MUSK gene mutations can present clinically as bilateral vocal cord paralysis in neonates.

11.
Neoplasma ; 70(2): 251-259, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37005956

RESUMEN

Platinum-based chemotherapy is the primary treatment option for advanced non-small cell lung cancer (NSCLC) patients without a driver gene mutation, but its efficacy is still modest. Through a potential synergistic effect, autologous cellular immunotherapy (CIT) composed of cytokine-induced killer (CIK), natural killer (NK), and T cells might enhance it. NK cells exhibited in vitro cytotoxicity toward lung cancer cells (A549 cells) following platinum therapy. Using flow cytometry, the expression of MICA, MICB, DR4, DR5, CD112, and CD155 on lung cancer cells was assessed. In this retrospective cohort study, there were included 102 previously untreated stage IIIB/IV NSCLC patients ineligible for tyrosine kinase inhibitor (TKI) target therapy who received either chemotherapy alone (n=75) or combination therapy (n=27). The cytotoxicity of NK cells for A549 cells was increased obviously and a time-dependent enhancement of this effect was also observed. After platinum therapy, the levels of MICA, MICB, DR4, DR5, CD112, and CD155 on the surface of A549 cells were increased. In the combination group, the median PFS was 8.3 months, compared to 5.5 months in the control group (p=0.042); the median overall survival was 18.00 months, compared to 13.67 months in the combined group (p=0.003). The combination group had no obvious immune-related adverse effects. The combination of NK cells with platinum showed synergistic anticancer effects. Combining the two strategies increased survival with minor adverse effects. Incorporating CIT into conventional chemotherapy regimens may improve NSCLC treatment. However, additional evidence will require multicenter randomized controlled trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Platino (Metal)/uso terapéutico , Estudios Retrospectivos , Inmunoterapia
12.
Heliyon ; 9(3): e13987, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36879970

RESUMEN

Purpose: This study aimed to explore: (1) the influence of maternal sociodemographic factors on breastfeeding attitudes, (2) the relationship between breastfeeding attitudes of postpartum women and their spouses, (3) the predictors of breastfeeding behavior (mixed breastfeeding) at two months postpartum, and (4) to establish the reliability of the Chinese version of the paternal Iowa Infant Feeding Attitude Scale (IIFAS) in Taiwan. Methods: A correlational and follow-up study design was used on a convenience sample of 215 women and 215 fathers recruited from a regional teaching hospital in central Taiwan from July 2020 to December 2020. The participants completed the IIFAS during postpartum hospitalization and a follow-up via telephone at 8 weeks postpartum for information on feeding methods and duration. The Cox proportional hazards model was used to analyze the predictors of breastfeeding duration. Results: Maternal breastfeeding attitude scores ranged from 42 to 79, with a mean score of 59.78 (SD ± 6.68). Spouses' breastfeeding attitude scores ranged from 46 to 81, with a mean score of 59.60 (SD ± 6.93). Mother and spouse's IIFAS scores were highly correlated (r = 0.50, p < 0.001), and the scores of both parents were significantly associated with the duration of breastfeeding. With each increased point on maternal and paternal IIFAS scores, the odds of breastfeeding during the first 8 weeks increased 6% and 10%, respectively. Conclusion: This is the first study to validate the IIFAS (Chinese version) with paternal participants in Taiwan. Identifying and understanding the infant feeding attitudes of mothers and their spouses should be an early step in designing and implementing breastfeeding interventions.

13.
J Nanobiotechnology ; 21(1): 113, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978136

RESUMEN

BACKGROUND: Hypertrophic scars (HS) affect millions of people each year and require better treatment strategies. Bacterial extracellular vesicles (EVs) are advantaged by low cost and high yield which was commonly used in the treatment of diseases. Here, we investigated the therapeutic efficacy of EVs obtained from Lactobacillus druckerii in hypertrophic scar. In vitro, the effects of Lactobacillus druckerii-derived EVs (LDEVs) on Collagen I/III and α-SMA in fibroblasts obtained from HS. In vivo, a scleroderma mouse model was used to investigate the effects of LDEVs on fibrosis. The impact of LDEVs on excisional wound healing was explored. The different proteins between PBS and LDEVs treated fibroblasts derived from hypertrophic scar were studied by untargeted proteomic analysis. RESULTS: In vitro, LDEVs treatment significantly inhibited the expression of Collagen I/III and α-SMA and cell proliferation of fibroblasts derived from HS. In vivo, LDEVs withdrawn the hypertrophic scar formation in scleroderma mouse model and decreased the expression of α-SMA. LDEVs promoted the proliferation of skin cells, new blood vessel formation and wound healing in excisional wound healing mice model. Moreover, proteomics has shown that LDEVs inhibit hypertrophic scar fibrosis through multiple pathways. CONCLUSIONS: Our results indicated that Lactobacillus druckerii-derived EVs has the potential application in the treatment of hypertrophic scars and any other fibrosis diseases.


Asunto(s)
Cicatriz Hipertrófica , Vesículas Extracelulares , Animales , Ratones , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Lactobacillus/metabolismo , Proteómica , Colágeno Tipo I/metabolismo , Fibroblastos , Vesículas Extracelulares/metabolismo
14.
Materials (Basel) ; 16(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36837112

RESUMEN

In this study, Co, Cr, and Ni were selected as the equal-atomic medium entropy alloy (MEA) systems, and Si was added to form CoCrNiSi0.3 MEA. In order to further improve its wear and corrosion properties, CrN film was sputtered on the surface. In addition, to enhance the adhesion between the soft CoCrNiSi0.3 substrate and the super-hard CrN film, a Cr buffer layer was pre-sputtered on the CoCrNiSi0.3 substrate. The experimental results show that the CrN film exhibits a columnar grain structure, and the film growth rate is about 2.022 µm/h. With the increase of sputtering time, the increase in CrN film thickness, and the refinement of columnar grains, the wear and corrosion resistance improves. Among all CoCrNiSi0.3 MEAs without and with CrN films prepared in this study, the CoCrNiSi0.3 MEA with 3 h-sputtered CrN film has the lowest wear rate of 2.249 × 10-5 mm3·m-1·N-1, and the best corrosion resistance of Icorr 19.37 µA·cm-2 and Rp 705.85 Ω·cm2.

15.
World J Clin Cases ; 11(3): 576-597, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36793625

RESUMEN

BACKGROUND: Patients with severe aplastic anemia (SAA) frequently present with inflammatory episodes, and during flared inflammatory episodes, hematopoietic function is further exacerbated. The gastrointestinal tract is the most common site for infectious and inflammatory diseases, and its structural and functional features confer on it the most potent capacity to affect hematopoietic and immune functions. Computed tomography (CT) is a readily accessible approach to provide highly useful information in detecting morphological changes and guiding further work-ups. AIM: To explore CT imaging presentations of gut inflammatory damage in adult SAA patients during inflammatory episodes. METHODS: We retrospectively evaluated the abdominal CT imaging presentations of 17 hospitalized adult patients with SAA in search of the inflammatory niche when they presented with systemic inflammatory stress and exacerbated hematopoietic function. In this descriptive manuscript, the characteristic images that suggested the presence of gastrointestinal inflammatory damage and related imaging presentations of individual patients were enumerated, analyzed and described. RESULTS: All eligible patients with SAA had CT imaging abnormalities that suggested the presence of an impaired intestinal barrier and increased epithelial permeability. The inflammatory damages were concurrently present in the small intestine, the ileocecal region and the large intestines. Some readily identified imaging signs, such as bowel wall thickening with mural stratification ("water holo sign", "fat holo sign", intramural gas and subserosal pneumatosis) and mesenteric fat proliferation (fat stranding and "creeping fat sign"), fibrotic bowel wall thickening, "balloon sign", rugged colonic configuration, heterogeneity in the bowel wall texture, and adhered and clustered small bowel loop (including various patterns of "abdominal cocoon"), occurred at a high incidence, which suggested that the damaged gastrointestinal tract is a common inflammatory niche responsible for the systemic inflammatory stresses and the exacerbated hematopoietic failure in patients with SAA. Particularly, the "fat holo sign" was present in 7 patients, a rugged colonic configuration was present in 10 patients, the adhesive bowel loop was present in 15 patients, and extraintestinal manifestations suggestive of tuberculosis infections were present in 5 patients. According to the imaging features, a suggestive diagnosis of Crohn's disease was made in 5 patients, ulcerative colitis in 1 patient, chronic periappendiceal abscess in 1 patient, and tuberculosis infection in 5 patients. Other patients were diagnosed with chronic enteroclolitis with acutely aggravated inflammatory damage. CONCLUSION: Patients with SAA had CT imaging patterns that suggested the presence of active chronic inflammatory conditions and aggravated inflammatory damage during flared inflammatory episodes.

16.
Org Biomol Chem ; 21(11): 2331-2336, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36815307

RESUMEN

Benzyl bromides have been widely used for fullerene functionalization. However, the use of benzyl chlorides, a more affordable but less reactive counterpart of benzyl bromides, has been rarely reported. Herein, a new metal-mediated benzylation of C60 with benzyl chlorides is presented. In this method, with the combinatorial use of Mn powder and Cu(OAc)2, various benzyl chloride derivatives could react with C60 to afford 1,4-dibenzylated products in 12-53% yields. A mechanistic study by in situ visible near infrared (vis-NIR) spectroscopy and various control experiments suggests that, unlike the conventional anionic pathway that uses benzyl bromides, the transition-metal-mediated benzylation of C60 with benzyl chlorides proceeds via a metal-mediated iterative single electron transfer process.

17.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-982297

RESUMEN

OBJECTIVE@#To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).@*METHODS@#Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.@*RESULTS@#The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs.@*CONCLUSIONS@#STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.


Asunto(s)
Ratas , Animales , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , RNA-Seq , Transcriptoma/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Colágeno , Colágeno Tipo I/metabolismo , Fibrosis , Miocardio/patología
18.
Food Sci Nutr ; 10(11): 3931-3941, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36348793

RESUMEN

Sepsis is a public cause of death in intensive care unit patients. Probiotics were widely used to increase the survival rate of sepsis by a series of clinical research. The purpose of this research was to investigate the therapeutic effects of Lactobacillus johnsonii 6084 in septic mice. Sepsis mouse model was induced by LPS treatment. The influence of L. johnsonii 6084 on the protection of organ injury induced by sepsis was explored. Moreover, the composition of gut microbiota was studied to clarify the mechanism of L. johnsonii 6084 therapeutic effect on sepsis. L. johnsonii 6084 treatment could conspicuously decrease the mortality and organ injury of sepsis. The reduction of gut microbial diversity and richness in septic mice were moderated by the administration of 6084. The abundance of Bacteroidetes and Proteobacteria were change by LPS treatment while restored by L. johnsonii 6084. To conclude, probiotic 6084 may has optimistic result on reducing mortality of sepsis through rebalancing gut microbiota.

19.
iScience ; 25(10): 105236, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36274941

RESUMEN

The clinical correlation between adiponectin (APN) signal and hypertrophic scar (HS) remains unclear. Here, we found significantly reduced expression of APN receptors (AdipoR1/2) in HS tissues and derived fibroblasts (HFs), suggesting that HS formation may be associated with APN/AdipoR1/2 decline. RNA sequencing and RT-PCR validation revealed that APN significantly elevated the expression of SIRT1. Both in vitro and in vivo experiments confirmed that SIRT1 plays important role in APN inhibiting the fibrotic phenotype transformation and proliferation of scar fibroblasts and improving skin fibrosis. Mechanistically, SIRT1 inhibited the acetylation of C/EBPß K39, histone H3K27, and H3K9, resulting in impaired transcription activity of C/EBPß and compact chromatin conformation, thus preventing C/EBPß from activating the transcription of YAP. Moreover, we found that YAP was critical for the transcriptional regulation of CTGF, CCND1, and CCNE1 by TEAD4. In conclusion, our study revealed the role of APN in antagonizing HS fibrosis by regulating the SIRT1/C/EBPß/YAP pathway.

20.
J Hazard Mater ; 437: 129445, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35897177

RESUMEN

Glomalin-related soil protein (GRSP) is an essential bioactive component that may respond to heavy metal stress; however, its exact influence on metal bioavailability and the associated mechanism remains poorly understood. This study investigated the speciation and distribution of heavy metals in soil aggregates associated with GRSP through macroscopic and microscopic approaches. A field study showed that the metal ions were distributed to the macro-aggregate fraction by partitioning the particle size classes during phytoremediation. Partial least squares path modeling (PLS-PM) demonstrated that the heavy metal bioavailability was negatively affected by aggregate stability (61.5%) and GRSP content (52.8%), suggesting that the soil aggregate properties regarding GRSP were vital drivers in mitigating environmental risk closely associated with toxic metal migration in soil-plant systems. The nonideal competitive adsorption (NICA)-Donnan model fitting suggested that GRSP were rich in acid site density, and the complexation with deprotonated groups dominated the speciation of heavy metals in soil. Further, the microfocus X-ray absorption/fluorescence spectroscopy analysis indicated that GRSP might promote the formation of stable metal species by binding with sulfur-containing sites. This study highlights the role of GRSP in heavy metal sequestration in contaminated soils, providing new guidance on the GRSP intervention for phytoremediation strategies.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Proteínas Fúngicas/química , Suelo/química , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...