Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38663404

RESUMEN

BACKGROUND: Crohn's disease complicated by perianal fistulae is more prevalent and severe in patients of African ancestry. METHODS: We profiled single cells from diverse patients with Crohn's disease with perianal fistula from colorectal mucosa and fistulous tracts. Immunofluorescence was performed to validate predicted cell-cell interactions. Unstimulated monocytes were chronically cultured in diverse cohorts. A subset was analyzed by single-nucleus RNA + ATAC sequencing. FINDINGS: Fistulous tract cells from complete proctectomies demonstrated enrichment of myeloid cells compared to paired rectal tissues. Ligand-receptor analysis highlights myeloid-stromal cross-talk and cellular senescence, with cellular co-localization validated by immunofluorescence. Chitinase-3 like-protein-1 (CHI3L1) is a top upregulated gene in stromal cells from fistulae expressing both destructive and fibrotic gene signatures. Monocyte cultures from patients of African ancestry and controls demonstrated differences in CHI3L1 and oncostatin M (OSM) expression upon differentiation compared to individuals of European ancestry. Activating protein-1 footprints are present in ATAC-seq peaks in stress response genes, including CHI3L1 and OSM; genome-wide chromatin accessibility including JUN footprints was observed, consistent with reported mechanisms of inflammatory memory. Regulon analyses confirm known cell-specific transcription factor regulation and implicate novel ones in fibroblast subsets. All pseudo-bulked clusters demonstrate enrichment of genetic loci, establishing multicellular contributions. In the most significant African American Crohn's genetic locus, upstream of prostaglandin E receptor 4, lymphoid-predominant ATAC-seq peaks were observed, with predicted RORC footprints. CONCLUSIONS: Population differences in myeloid-stromal cross-talk implicate fibrotic and destructive fibroblasts, senescence, epigenetic memory, and cell-specific enhancers in perianal fistula pathogenesis. The transcriptomic and epigenetic data provided here may guide optimization of promising mesenchymal stem cell therapies for perianal fistula. FUNDING: This work was supported by grants U01DK062422, U24DK062429, and R01DK123758.

2.
Receptors (Basel) ; 2(1): 93-99, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38651159

RESUMEN

The aryl hydrocarbon receptor (AhR) is overexpressed in many tumor types and exhibits tumor-specific tumor promoter and tumor suppressor-like activity. In colon cancer, most but not all studies suggest that the AhR exhibits tumor suppressor activity which is enhanced by AhR ligands acting as agonists. Our studies investigated the role of the AhR in colon tumorigenesis using wild-type and AhR-knockout mice, the inflammation model of colon tumorigenesis using mice treated with azoxymethane (AOM)/dextran sodium sulfate (DSS) and APCS580/+; KrasG12D/+ mice all of which form intestinal tumors. The effects of tissue-specific AhR loss in the intestine of the tumor-forming mice on colonic stem cells, organoid-initiating capacity, colon tumor formation and mechanisms of AhR-mediated effects were investigated. Loss of AhR enhanced stem cell and tumor growth and in the AOM/DSS model AhR-dependent suppression of FOXM1 and downstream genes was important for AhR-dependent anticancer activity. Furthermore, the effectiveness of interleukin-22 (IL22) in colonic epithelial cells was also dependent on AhR expression. IL22 induced phosphorylation of STAT3, inhibited colonic organoid growth, promoted colonic cell proliferation in vivo and enhanced DNA repair in AOM/DSS-induced tumors. In this mouse model, the AhR suppressed SOCS3 expression and enhanced IL22-mediated activation of STAT3, whereas the loss of the AhR increased levels of SOCS3 which in turn inhibited IL22-induced STAT3 activation. In the APCS580/+; KrasG12D/+ mouse model, the loss of the AhR enhanced Wnt signaling and colon carcinogenesis. Results in both mouse models of colon carcinogenesis were complemented by single cell transcriptomics on colonic intestinal crypts which also showed that AhR deletion promoted expression of FOXM1-regulated genes in multiple colonic cell subtypes. These results support the role of the AhR as a tumor suppressor-like gene in the colon.

3.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G93-G106, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755534

RESUMEN

IL22 signaling plays an important role in maintaining gastrointestinal epithelial barrier function, cell proliferation, and protection of intestinal stem cells from genotoxicants. Emerging studies indicate that the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, promotes production of IL22 in gut immune cells. However, it remains to be determined if AhR signaling can also affect the responsiveness of colonic epithelial cells to IL22. Here, we show that IL22 treatment induces the phosphorylation of STAT3, inhibits colonic organoid growth, and promotes colonic cell proliferation in vivo. Notably, intestinal cell-specific AhR knockout (KO) reduces responsiveness to IL22 and compromises DNA damage response after exposure to carcinogen, in part due to the enhancement of suppressor of cytokine signaling 3 (SOCS3) expression. Deletion of SOCS3 increases levels of pSTAT3 in AhR KO organoids, and phenocopies the effects of IL22 treatment on wild-type (WT) organoid growth. In addition, pSTAT3 levels are inversely associated with increased azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in AhR KO mice. These findings indicate that AhR function is required for optimal IL22 signaling in colonic epithelial cells and provide rationale for targeting AhR as a means of reducing colon cancer risk.NEW & NOTEWORTHY AhR is a key transcription factor controlling expression of IL22 in gut immune cells. In this study, we show for the first time that AhR signaling also regulates IL22 response in colonic epithelial cells by modulating SOCS3 expression.


Asunto(s)
Colon/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Interleucinas/farmacología , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Factor de Transcripción STAT3/efectos de los fármacos , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Colon/metabolismo , Neoplasias del Colon/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ratones Noqueados , Organoides/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/fisiología , Proteína 3 Supresora de la Señalización de Citocinas/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Activación Transcripcional/fisiología , Interleucina-22
4.
Cancer Prev Res (Phila) ; 15(1): 17-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34815312

RESUMEN

Despite recent progress recognizing the importance of aryl hydrocarbon receptor (Ahr)-dependent signaling in suppressing colon tumorigenesis, its role in regulating colonic crypt homeostasis remains unclear. To assess the effects of Ahr on intestinal epithelial cell heterogeneity and functional phenotypes, we utilized single-cell transcriptomics and advanced analytic strategies to generate a high-quality atlas for colonic intestinal crypts from wild-type and intestinal-specific Ahr knockout mice. Here we observed the promotive effects of Ahr deletion on Foxm1-regulated genes in crypt-associated canonical epithelial cell types and subtypes of goblet cells and deep crypt-secretory cells. We also show that intestinal Ahr deletion elevated single-cell entropy (a measure of differentiation potency or cell stemness) and RNA velocity length (a measure of the rate of cell differentiation) in noncycling and cycling Lgr5+ stem cells. In general, intercellular signaling cross-talk via soluble and membrane-bound factors was perturbed in Ahr-null colonocytes. Taken together, our single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating putative stem cell driver genes, cell potency lineage decisions, and cell-cell communication in vivo. PREVENTION RELEVANCE: Our mouse single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating colonic stemness and cell-cell communication in vivo. From a cancer prevention perspective, Ahr should be considered a therapeutic target to recalibrate remodeling of the intestinal stem cell niche.


Asunto(s)
Colon , Receptores de Hidrocarburo de Aril , Animales , Diferenciación Celular , Ratones , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
5.
Annu Rev Nutr ; 41: 455-478, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34633858

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Dieta , Homeostasis , Humanos , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo
6.
Mol Cancer Res ; 19(5): 771-783, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33495399

RESUMEN

The mutational genetic landscape of colorectal cancer has been extensively characterized; however, the ability of "cooperation response genes" to modulate the function of cancer "driver" genes remains largely unknown. In this study, we investigate the role of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, in modulating oncogenic cues in the colon. We show that intestinal epithelial cell-targeted AhR knockout (KO) promotes the expansion and clonogenic capacity of colonic stem/progenitor cells harboring ApcS580/+; KrasG12D/+ mutations by upregulating Wnt signaling. The loss of AhR in the gut epithelium increased cell proliferation, reduced mouse survival rate, and promoted cecum and colon tumorigenesis in mice. Mechanistically, the antagonism of Wnt signaling induced by Lgr5 haploinsufficiency attenuated the effects of AhR KO on cecum and colon tumorigenesis. IMPLICATIONS: Our findings reveal that AhR signaling plays a protective role in genetically induced colon tumorigenesis at least by suppressing Wnt signaling and provides rationale for the AhR as a therapeutic target for cancer prevention and treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis , Femenino , Masculino , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Hidrocarburo de Aril/genética , Vía de Señalización Wnt
7.
EMBO J ; 39(19): e104319, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32915464

RESUMEN

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.


Asunto(s)
Colon/metabolismo , Proteína Forkhead Box M1/metabolismo , Receptores de Hidrocarburo de Aril/deficiencia , Transducción de Señal , Células Madre/metabolismo , Animales , Femenino , Proteína Forkhead Box M1/genética , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Ratones Transgénicos , Receptores de Hidrocarburo de Aril/metabolismo
8.
J Immunol ; 205(7): 1886-1896, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32826280

RESUMEN

The innate immune system is the first line of defense against bacterial and viral infections. The recognition of pathogen-associated molecular patterns by the RIG-I-like receptors, TLRs, and cGAS leads to the induction of IFN-I by activating the transcription factor IRF-3. Although the mechanism of IRF-3 activation has been extensively studied, the structural basis of IRF-3 activation upon phosphorylation is not fully understood. In this study, we determined the crystal structures of phosphorylated human and mouse IRF-3 bound to CREB-binding protein (CBP), which reveal that phosphorylated IRF-3 forms a dimer via pSer386 (pSer379 in mouse IRF-3) and a downstream pLxIS motif. Size-exclusion chromatography and cell-based studies show that mutations of key residues interacting with pSer386 severely impair IRF-3 activation and IFN-ß induction. By contrast, phosphorylation of Ser396 within the pLxIS motif of human IRF-3 only plays a moderate role in IRF-3 activation. The mouse IRF-3/CBP complex structure reveals that the mechanism of mouse IRF-3 activation is similar but distinct from human IRF-3. These structural and functional studies reveal the detailed mechanism of IRF-3 activation upon phosphorylation.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Animales , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Ratones , Mutagénesis Sitio-Dirigida , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Células Sf9 , Especificidad de la Especie , Spodoptera , Relación Estructura-Actividad
9.
Curr Stem Cell Rep ; 6(4): 109-118, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34395177

RESUMEN

PURPOSE OF REVIEW: Intestinal stem cells, the most rapidly proliferating adult stem cells, are exquisitely sensitive to extrinsic dietary factors. Uncontrolled regulation of intestinal stem cells is closely linked to colon tumorigenesis. This review focuses on how dietary and microbial derived cues regulate intestinal stem cell functionality and colon tumorigenesis in mouse models by targeting the aryl hydrocarbon receptor (AhR). RECENT FINDINGS: AhR, a ligand activated transcription factor, can integrate environmental, dietary and microbial cues to modulate intestinal stem cell proliferation, differentiation and their microenvironment, affecting colon cancer risk. Modulation of AhR activity is associated with many chronic diseases, including inflammatory bowel diseases where AhR expression is protective. SUMMARY: AhR signaling controls the maintenance and differentiation of intestinal stem cells, influences local niche factors, and plays a protective role in colon tumorigenesis. Mounting evidence suggests that extrinsic nutritional/dietary cues which modulate AhR signaling may be a promising approach to colon cancer chemoprevention.

10.
Curr Opin Toxicol ; 11-12: 10-20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31453421

RESUMEN

The aryl hydrocarbon receptor (AhR) binds structurally diverse ligands that vary from the environmental toxicant 2,3,7,8-tetrachlorodibenzo-B-dioxin (TCDD) to AhR- active pharmaceuticals and health-promoting phytochemicals. There are remarkable differences in the toxicity of TCDD and related halogenated aromatics (HAs) vs. health promoting AhR ligands, and genomic analysis shows that even among the toxic HAs, there are differences in their regulation of genes and pathways. Thus, like ligands for other receptors, AhR ligands are selective AhR modulators (SAhRMs) which exhibit variable tissue-, organ- and species-specific genomic and functional activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...