Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 84(5): 703-724, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38038968

RESUMEN

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Ratones , Animales , Lipólisis/genética , Metabolismo de los Lípidos , Lipasa/genética , Lipasa/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina
2.
Cells ; 11(12)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741020

RESUMEN

Despite early studies linking calcium-calmodulin protein kinase kinase 2 (CAMKK2) to prostate cancer cell migration and invasion, the role of CAMKK2 in metastasis in vivo remains unclear. Moreover, while CAMKK2 is known to regulate systemic metabolism, whether CAMKK2's effects on whole-body metabolism would impact prostate cancer progression and/or related comorbidities is not known. Here, we demonstrate that germline ablation of Camkk2 slows, but does not stop, primary prostate tumorigenesis in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) genetic mouse model. Consistent with prior epidemiological reports supporting a link between obesity and prostate cancer aggressiveness, TRAMP mice fed a high-fat diet exhibited a pronounced increase in the colonization of lung metastases. We demonstrated that this effect on the metastatic spread was dependent on CAMKK2. Notably, diet-induced lung metastases exhibited a highly aggressive neuroendocrine phenotype. Concurrently, Camkk2 deletion improved insulin sensitivity in the same mice. Histological analyses revealed that cancer cells were smaller in the TRAMP;Camkk2-/- mice compared to TRAMP;Camkk2+/+ controls. Given the differences in circulating insulin levels, a known regulator of cell growth, we hypothesized that systemic CAMKK2 could promote prostate cancer cell growth and disease progression in part through cancer cell-extrinsic mechanisms. Accordingly, host deletion of Camkk2 impaired the growth of syngeneic murine prostate tumors in vivo, confirming nonautonomous roles for CAMKK2 in prostate cancer. Cancer cell size and mTOR signaling was diminished in tumors propagated in Camkk2-null mice. Together, these data indicate that, in addition to cancer cell-intrinsic roles, CAMKK2 mediates prostate cancer progression via tumor-extrinsic mechanisms. Further, we propose that CAMKK2 inhibition may also help combat common metabolic comorbidities in men with advanced prostate cancer.


Asunto(s)
Adenocarcinoma , Resistencia a la Insulina , Neoplasias Pulmonares , Neoplasias de la Próstata , Adenocarcinoma/patología , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Carcinogénesis/patología , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/patología , Proteínas Quinasas
3.
Oncogene ; 40(9): 1690-1705, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33531625

RESUMEN

Previous work has suggested androgen receptor (AR) signaling mediates prostate cancer progression in part through the modulation of autophagy. However, clinical trials testing autophagy inhibition using chloroquine derivatives in men with castration-resistant prostate cancer (CRPC) have yet to yield promising results, potentially due to the side effects of this class of compounds. We hypothesized that identification of the upstream activators of autophagy in prostate cancer could highlight alternative, context-dependent targets for blocking this important cellular process during disease progression. Here, we used molecular, genetic, and pharmacological approaches to elucidate an AR-mediated autophagy cascade involving Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2; a kinase with a restricted expression profile), 5'-AMP-activated protein kinase (AMPK), and Unc-51 like autophagy activating kinase 1 (ULK1), but independent of canonical mechanistic target of rapamycin (mTOR) activity. Increased CAMKK2-AMPK-ULK1 signaling correlated with disease progression in genetic mouse models and patient tumor samples. Importantly, CAMKK2 disruption impaired tumor growth and prolonged survival in multiple CRPC preclinical mouse models. Similarly, an inhibitor of AMPK-ULK1 blocked autophagy, cell growth, and colony formation in prostate cancer cells. Collectively, our findings converge to demonstrate that AR can co-opt the CAMKK2-AMPK-ULK1 signaling cascade to promote prostate cancer by increasing autophagy. Thus, this pathway may represent an alternative autophagic target in CRPC.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proteínas Quinasas/genética , Receptores Androgénicos/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Transducción de Señal/efectos de los fármacos
4.
Prostate Cancer Prostatic Dis ; 24(2): 358-361, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32895469

RESUMEN

BACKGROUND: The TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model remains one of the most widely used transgenic mouse models of prostate cancer. This is due to its ability to recapitulate with ~100% penetrance multiple aspects of the human disease such as prostatic intraepithelial neoplasia lesions, invasive carcinoma, progression to castration-resistant prostate cancer including aggressive neuroendocrine prostate cancer and metastasis. Despite its popularity, the use of TRAMP mice is limited/slowed by the inability to distinguish the zygosity of the TRAMP transgene. This is especially true for breeding strategies implementing multiple crosses and alleles and when the rapid generation of large animal cohorts with the desired genotype is needed. METHODS: We developed a quantitative PCR (qPCR) approach to determine the relative TRAMP transgene copy number of mice. RESULTS: This method was validated by three independent laboratories across two institutions, which successfully identified the genotype of the mice 98.2% of the time (165/168) in the first attempt. The genotypes of the uncertain mice were correctly identified in the repeated experiments. CONCLUSIONS: We develop the first straightforward, qPCR approach to reliably determine the TRAMP transgene zygosity. The development of this qPCR-based genotyping method enables researchers to streamline breeding strategies when creating complex genetic mouse models involving TRAMP mice; thus, ultimately reducing the required animal numbers, cost, and investigator time.


Asunto(s)
Modelos Animales de Enfermedad , Heterocigoto , Homocigoto , Reacción en Cadena de la Polimerasa/métodos , Neoplasias de la Próstata/genética , Transgenes , Animales , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/patología
5.
Mol Endocrinol ; 27(2): 280-95, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23250485

RESUMEN

Androgens regulate both the physiological development of the prostate and the pathology of prostatic diseases. However, the mechanisms by which androgens exert their regulatory activities on these processes are poorly understood. In this study, we have determined that androgens regulate overall cell metabolism and cell growth, in part, by increasing autophagy in prostate cancer cells. Importantly, inhibition of autophagy using either pharmacological or molecular inhibitors significantly abrogated androgen-induced prostate cancer cell growth. Mechanistically, androgen-mediated autophagy appears to promote cell growth by augmenting intracellular lipid accumulation, an effect previously demonstrated to be necessary for prostate cancer cell growth. Further, autophagy and subsequent cell growth is potentiated, in part, by androgen-mediated increases in reactive oxygen species. These findings demonstrate a role for increased fat metabolism and autophagy in prostatic neoplasias and highlight the potential of targeting underexplored metabolic pathways for the development of novel therapeutics.


Asunto(s)
Andrógenos/metabolismo , Autofagia , Lípidos/biosíntesis , Neoplasias de la Próstata/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Humanos , Metabolismo de los Lípidos , Lipogénesis , Masculino , Neoplasias de la Próstata/patología , Interferencia de ARN , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...