Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401248, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639029

RESUMEN

Chlorine has been supplied by the chlor-alkali process that deploys dimensionally stable anodes (DSAs) for the electrochemical chlorine evolution reaction (ClER). The paramount bottlenecks have been ascribed to an intensive usage of precious elements and inevitable competition with the oxygen evolution reaction. Herein, a unique case of Ru2+-O4 active motifs anchored on Magnéli Ti4O7 (Ru-Ti4O7) via a straightforward wet impregnation and mild annealing is reported. The Ru-Ti4O7 performs radically active ClER with minimal deployment of Ru (0.13 wt%), both in 5 m NaCl (pH 2.3) and 0.1 m NaCl (pH 6.5) electrolytes. Scanning electrochemical microscopy demonstrates superior ClER selectivity on Ru-Ti4O7 compared to the DSA. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a universally active ClER (over a wide range of pH and [Cl-]), through a direct adsorption of Cl- on Ru2+-O4 sites as the most plausible pathway, together with stabilized ClO* at low [Cl-] and high pH.

2.
ACS Omega ; 9(11): 13200-13207, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524452

RESUMEN

Considering the remarkable catalytic activity (160 times higher) of Se/DMAP for the oxidative carbonylation of alcohols, unveiling the role of DMAP in catalysis is highly required. We investigated DFT calculations, and the proposed intermediates were verified with in situ ATR-FTIR analysis. DFT showed that the formation of [DMAP···HSe]δ-[DMAP(CO)OR]δ+ (IV) via nucleophilic substitution of DMAP at the carbonyl group of DMAP···HSe(CO)OR is the most energetically favorable. DMAP acts as both a nucleophile and a hydrogen bond acceptor, which is responsible for its remarkable activity.

3.
J Chem Theory Comput ; 20(5): 2284-2296, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38358319

RESUMEN

Numerous systematic methods have been developed to search for the global minimum of the potential energy surface, which corresponds to the optimal atomic structure. However, the majority of them still demand a substantial computing load due to the relaxation process that is embedded as an inner step inside the algorithm. Here, we propose a hybrid approach that combines Bayesian optimization (BO) and a local search that circumvents the relaxation step and efficiently finds the optimum structure, particularly in supported metal systems. The hybridization strategy combining the capabilities of BO's effective exploration and the local search's fast convergence expedites structural search. In addition, the formulation of physical constraints regarding the materials system and the feature of screening structure similarity enhance the computational efficiency of the proposed method. The proposed algorithm is demonstrated in two supported metal systems, showing the potential of the proposed method in the field of structural optimization.

4.
Small Methods ; : e2301251, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308408

RESUMEN

The 1T phase of MoS2 exhibits much higher electrocatalytic activity and better stability than the 2H phase. However, the harsh conditions of 1T phase synthesis remain a significant challenge for various extensions and applications of MoS2 . In this work, a simple hydrothermal-based synthesis method for the phase transition of MoS2 is being developed. For this, the NH2 -MIL-125(Ti) (Ti MOF) is successfully utilized to induce the phase transition of MoS2 from 2H to 1T, achieving a high conversion ratio of ≈78.3%. The optimum phase-induced MoS2 /Ti MOF heterostructure demonstrates enhanced oxygen evolution reaction (OER) performance, showing an overpotential of 290 mV at a current density of 10 mA cm-2 . The density functional theory (DFT) calculations are demonstrating the benefits of this phase transition, determining the electronic properties and OER performance of MoS2 .

5.
Langmuir ; 40(4): 1961-1970, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38224073

RESUMEN

A key issue in lithium-ion batteries is understanding the solid electrolyte interphase (SEI) resulting from a reductive reaction on the anode/electrolyte interface. The presence of the SEI layer affects the transport behavior of the ions and electrons between the anode and electrolyte. Despite the influence on interfacial properties, the formation and evolution mechanism of the SEI layer are unclear owing to their complexity and dynamic nature. Atomistic-scale simulations have promoted the understanding of the reaction mechanism on the anode/electrolyte interface, the formation and evolution of the SEI layer, and their fundamental properties. This Perspective discusses the modeling and interpretations of anode/SEI/electrolyte interfaces through computational methods at the atomic-scale and highlights interfacial modeling techniques for a realistic interface design, which can overcome the limited time and length scale with high accuracy.

6.
Adv Mater ; 36(13): e2306602, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091378

RESUMEN

Single-atom nanozymes (SAzymes) constitute a promising category of enzyme-mimicking materials with outstanding catalytic performance. The performance of SAzymes improves through modification of the coordination environments around the metal center. However, the catalytic turnover rates of SAzymes, which are key measures of the effectiveness of active site modifications, remain lower than those of natural enzymes, especially in peroxidase-reactions. Here, the first and second shell coordination tuning strategy that yields SAzymes with structures and activities analogous to those of natural enzymes is reported. The optimized SAzyme exhibits a turnover rate of 52.7 s-1 and a catalytic efficiency of 6.97 × 105 M-1 s-1. A computational study reveals that axial S-ligands induce an alternative reaction mechanism, and SO2- functional groups provide hydrogen bonds to reduce the activation energy. In addition, SAzyme shows superior anti-tumor ability in vitro and in vivo. These results demonstrate the validity of coordination engineering strategies and the carcinostatic potential of SAzymes.


Asunto(s)
Carbono , Hierro , Hierro/química , Carbono/química , Catálisis
7.
Nat Commun ; 14(1): 7493, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980430

RESUMEN

Strong circularly polarized excitation opens up the possibility to generate and control effective magnetic fields in solid state systems, e.g., via the optical inverse Faraday effect or the phonon inverse Faraday effect. While these effects rely on material properties that can be tailored only to a limited degree, plasmonic resonances can be fully controlled by choosing proper dimensions and carrier concentrations. Plasmon resonances provide new degrees of freedom that can be used to tune or enhance the light-induced magnetic field in engineered metamaterials. Here we employ graphene disks to demonstrate light-induced transient magnetic fields from a plasmonic circular current with extremely high efficiency. The effective magnetic field at the plasmon resonance frequency of the graphene disks (3.5 THz) is evidenced by a strong ( ~ 1°) ultrafast Faraday rotation ( ~ 20 ps). In accordance with reference measurements and simulations, we estimated the strength of the induced magnetic field to be on the order of 0.7 T under a moderate pump fluence of about 440 nJ cm-2.

8.
Nat Commun ; 14(1): 7667, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996475

RESUMEN

Metal nanoparticle-organic interfaces are common but remain elusive for controlling reactions due to the complex interactions of randomly formed ligand-layers. This paper presents an approach for enhancing the selectivity of catalytic reactions by constructing a skin-like few-nanometre ultrathin crystalline porous covalent organic overlayer on a plasmonic nanoparticle surface. This organic overlayer features a highly ordered layout of pore openings that facilitates molecule entry without any surface poisoning effects and simultaneously endows favourable electronic effects to control molecular adsorption-desorption. Conformal organic overlayers are synthesised through the plasmonic oxidative activation and intermolecular covalent crosslinking of molecular units. We develop a light-operated multicomponent interfaced plasmonic catalytic platform comprising Pd-modified gold nanoparticles inside hollow silica to achieve the highly efficient and selective semihydrogenation of alkynes. This approach demonstrates a way to control molecular adsorption behaviours on metal surfaces, breaking the linear scaling relationship and simultaneously enhancing activity and selectivity.

9.
Int J Hyperthermia ; 40(1): 2260127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37748776

RESUMEN

OBJECTIVES: Focused ultrasound (FUS) therapy has emerged as a promising noninvasive solution for tumor ablation. Accurate monitoring and guidance of ultrasound energy is crucial for effective FUS treatment. Although ultrasound (US) imaging is a well-suited modality for FUS monitoring, US-guided FUS (USgFUS) faces challenges in achieving precise monitoring, leading to unpredictable ablation shapes and a lack of quantitative monitoring. The demand for precise FUS monitoring heightens when complete tumor ablation involves controlling multiple sonication procedures. METHODS: To address these challenges, we propose an artificial intelligence (AI)-assisted USgFUS framework, incorporating an AI segmentation model with B-mode ultrasound imaging. This method labels the ablated regions distinguished by the hyperechogenicity effect, potentially bolstering FUS guidance. We evaluated our proposed method using the Swin-Unet AI architecture, conducting experiments with a USgFUS setup on chicken breast tissue. RESULTS: Our results showed a 93% accuracy in identifying ablated areas marked by the hyperechogenicity effect in B-mode imaging. CONCLUSION: Our findings suggest that AI-assisted ultrasound monitoring can significantly improve the precision and control of FUS treatments, suggesting a crucial advancement toward the development of more effective FUS treatment strategies.


Asunto(s)
Neoplasias , Terapia por Ultrasonido , Humanos , Estudios de Factibilidad , Inteligencia Artificial , Ultrasonografía , Ultrasonografía Intervencional
10.
Adv Mater ; 35(47): e2306157, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651648

RESUMEN

Advanced energy-storage devices are indispensable for expanding electric mobility applications. While anion intercalation-type redox chemistry in graphite cathodes has opened the path to high-energy-density batteries, surpassing the limited energy density of conventional lithium-ion batteries , a significant challenge remains: the large volume expansion of graphite upon anion intercalation. In this study, a novel polymeric binder and cohesive graphite cathode design for dual-ion batteries (DIBs) is presented, which exhibits remarkable stability even under high voltage conditions (>5 V). The innovative binder incorporates an acrylate moiety ensuring superior oxidative stability and self-healing features, along with an azide moiety, which allows for azacyclic covalent bonding with graphite and interchain crosslinking. A simple 1-h ultraviolet treatment is sufficient for binder fixation within the electrode, leading to the covalent bond formation with graphite and the creation of a robust three-dimensional network. This modification facilitates deeper and more reversible anion intercalation, leading to improved capacity, extended lifespan, and sustainable anion storage. The binder design, exhibiting exceptional adhesive properties and effective stress mitigation, enables the construction of ultrathick graphite cathodes. These findings provide valuable insights for the development of advanced binders, paving the way for high-performance DIBs.

11.
ACS Nano ; 17(11): 10677-10688, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37253163

RESUMEN

Nanoparticle (NP) exsolution from perovskite-based oxides matrix upon reduction has emerged as an ideal platform for designing highly active catalysts for energy and environmental applications. However, the mechanism of how the material characteristics impacts the activity is still ambiguous. In this work, taking Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3 thin film as the model system, we demonstrate the critical impact of the exsolution process on the local surface electronic structure. Combining advanced microscopic and spectroscopic techniques, particularly scanning tunneling microscopy/spectroscopy and synchrotron-based near ambient X-ray photoelectron spectroscopy, we find that the band gaps of both the oxide matrix and exsolved NP decrease during exsolution. Such changes are attributed to the defect state within the forbidden band introduced by oxygen vacancies and the charge transfer across the NP/matrix interface. Both the electronic activations of oxide matrix and the exsolved NP phase lead to good electrocatalytic activity toward the fuel oxidation reaction at elevated temperature.

12.
Small ; 19(32): e2300963, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37066701

RESUMEN

Two essential characteristics that are required for hybrid electrocatalysts to exhibit higher oxygen and hydrogen evolution reaction (OER and HER, respectively) activity are a favorable electronic configuration and a sufficient density of active sites at the interface between the two materials within the hybrid. In the present study, a hybrid electrocatalyst is introduced with a novel architecture consisting of coral-like iron nitride (Fe2 N) arrays and tungsten nitride (W2 N3 ) nanosheets that satisfies these requirements. The resulting W2 N3 /Fe2 N catalyst achieves high OER activity (268.5 mV at 50 mA cm-2 ) and HER activity (85.2 mV at 10 mA cm-2 ) with excellent long-term durability in an alkaline medium. In addition, density functional theory calculations reveal that the individual band centers experience an upshift in the hybrid W2 N3 /Fe2 N structure, thus improving the OER and HER activity. The strategy adopted here thus provides a valuable guide for the fabrication of cost-effective multi-metallic crystalline hybrids for use as multifunctional electrocatalysts.

13.
Nanomicro Lett ; 15(1): 62, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899274

RESUMEN

Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes. In the present study, a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism. The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition. The Schottky junction accelerates and decelerates the diffusion of OH‒/K+ ions during the charging and discharging processes, respectively, to improve the pseudocapacitive behavior. The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g-1 at 2 A g-1 matches almost that of the positive electrode's 2,795 C g-1 at 3 A g-1. As a result, with the equivalent contribution from the positive and negative electrodes, an energy density of 236.1 Wh kg-1 is achieved at a power density of 921.9 W kg-1 with a total active mass of 15 mg cm-2. This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density, thus, offering a route for further advances in electrochemical energy storage and conversion processes.

14.
Angew Chem Int Ed Engl ; 62(15): e202300119, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780128

RESUMEN

Single-atom nanozymes (SAzymes) are promising in next-generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi-enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi-enzymatic performances. The constructed MnSA -N3 -coordinated SAzymes (MnSA -N3 -C) exhibits much more remarkable oxidase-, peroxidase-, and glutathione oxidase-like activities than that of MnSA -N4 -C. Based on experimental and theoretical results, these multi-enzyme-like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA -N3 -C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic-level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.


Asunto(s)
Técnicas Biosensibles , Manganeso , Colorimetría , Carbono , Peroxidasas , Peroxidasa , Catálisis
15.
Small ; 19(11): e2204850, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642858

RESUMEN

Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2 Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2 Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.

16.
Adv Mater ; 35(10): e2208999, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36527728

RESUMEN

High-energy and long cycle lithium-sulfur (Li-S) pouch cells are limited by the insufficient capacities and stabilities of their cathodes under practical electrolyte/sulfur (E/S), electrolyte/capacity (E/C), and negative/positive (N/P) ratios. Herein, an advanced cathode comprising highly active Fe single-atom catalysts (SACs) is reported to form 320.2 W h kg-1 multistacked Li-S pouch cells with total capacity of ≈1 A h level, satisfying low E/S (3.0), E/C (2.8), and N/P (2.3) ratios and high sulfur loadings (8.4 mg cm-2 ). The high-activity Fe SAC is designed by manipulating its local environments using electron-exchangeable binding (EEB) sites. Introducing EEB sites comprising two different types of S species, namely, thiophene-like-S (-S) and oxidized-S (-SO2 ), adjacent to Fe SACs promotes the kinetics of the Li2 S redox reaction by providing additional binding sites and modulating the Fe d-orbital levels via electron exchange with Fe. The -S donates the electrons to the Fe SACs, whereas -SO2 withdraws electrons from the Fe SACs. Thus, the Fe d-orbital energy level can be modulated by the different -SO2 /-S ratios of the EEB site, controlling the electron donating/withdrawing characteristics. This desirable electrocatalysis is maximized by the intimate contact of the Fe SACs with the S species, which are confined together in porous carbon.

17.
Small ; 19(5): e2204905, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36446633

RESUMEN

To separately explore the importance of hydrophilicity and backbone planarity of polymer photocatalyst, a series of benzothiadiazole-based donor-acceptor alternating copolymers incorporating alkoxy, linear oligo(ethylene glycol) (OEG) side chain, and backbone fluorine substituents is presented. The OEG side chains in the polymer backbone increase the surface energy of the polymer nanoparticles, thereby improving the interaction with water and facilitating electron transfer to water. Moreover, the OEG-attached copolymers exhibit enhanced intermolecular packing compared to polymers with alkoxy side chains, which is possibly attributed to the self-assembly properties of the side chains. Fluorine substituents on the polymer backbone produce highly ordered lamellar stacks with distinct π-π stacking features; subsequently, the long-lived polarons toward hydrogen evolution are observed by transient absorption spectroscopy. In addition, a new nanoparticle synthesis strategy using a methanol/water mixed solvent is first adopted, thereby avoiding the screening effect of surfactants between the nanoparticles and water. Finally, hydrogen evolution rate of 26 000 µmol g-1  h-1 is obtained for the copolymer incorporated with both OEG side chains and fluorine substituents under visible-light irradiation (λ > 420 nm). This study demonstrates how the glycol side chain strategy can be further optimized for polymer photocatalysts by controlling the backbone planarity.

18.
Adv Mater ; 35(1): e2207320, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271732

RESUMEN

Chemical doping can be used to tune the optoelectronic properties of conjugated polymers (CPs), extending their applications as conducting materials. Unfortunately, chemically doped CP films containing excess dopants exhibit an increase in energetic disorder upon structural alteration, and Coulomb interactions between charge carriers and dopants also affect such disorder. The increase in energetic disorder leads to a broadening of the density of states, which consequently impedes efficient charge transport in chemically doped CPs. However, the molecular origins that are inherently resistant to such incidental increase of energetic disorder in chemically doped CPs have not been sufficiently explored. Here, it is discovered that energetic disorder in chemically doped CPs can be suppressed to a level close to the theoretical limit. Indacenodithiophene-co-benzothiadiazole (IDTBT) doped with triethyloxonium hexachloroantimonate (OA) exhibits disorder-free charge-transport characteristics and band-like transport behavior with astonishing carrier mobility as a result of reinforced 1D intramolecular transport. Molecular structure of IDTBT provides a capability to lower the energetic disorder that generally arises from the inclusion of heterogeneous dopants. The results suggest the possibilities of implementing disorder-free CPs that exhibit excellent charge transport characteristics in the chemically doped state and satisfy a prerequisite for their availability in the industry.

19.
Adv Mater ; 35(4): e2203370, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35738568

RESUMEN

Metal oxides possessing distinctive physical/chemical properties due to different crystal structures and stoichiometries play a pivotal role in numerous current technologies, especially heterogeneous catalysis for production/conversion of high-valued chemicals and energy. To date, many researchers have investigated the effect of the structure and composition of these materials on their reactivity to various chemical and electrochemical reactions. However, metal oxide surfaces evolve from their initial form under dynamic reaction conditions due to the autonomous behaviors of the constituent atoms to adapt to the surrounding environment. Such nanoscale surface phenomena complicate reaction mechanisms and material properties, interrupting the clarification of the origin of functionality variations in reaction environments. In this review, the current findings on the spontaneous surface reorganization of metal oxides during reactions are categorized into three types: 1) the appearance of nano-sized second phase from oxides, 2) the (partial) encapsulation of oxide atoms toward supported metal surfaces, and 3) the oxide surface reconstruction with selective cation leaching in aqueous solution. Then their effects on each reaction are summarized in terms of activity and stability, providing novel insight for those who design metal-oxide-based catalytic materials.

20.
Adv Mater ; 35(43): e2204938, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35917488

RESUMEN

Hydroxyapatite (HAP) is a green catalyst that has a wide range of applications in catalysis due to its high flexibility and multifunctionality. These properties allow HAP to accommodate a large number of catalyst modifications that can selectively improve the catalytic performance in target reactions. To date, many studies have been conducted to elucidate the effect of HAP modification on the catalytic activities for various reactions. However, systematic design strategies for HAP catalysts are not established yet due to an incomplete understanding of underlying structure-activity relationships. In this review, tuning methods of HAP for improving the catalytic performance are discussed: 1) ionic composition change, 2) morphology control, 3) incorporation of other metal species, and 4) catalytic support engineering. Detailed mechanisms and effects of structural modulations on the catalytic performances for attaining the design insights of HAP catalysts are investigated. In addition, computational studies to understand catalytic reactions on HAP materials are also introduced. Finally, important areas for future research are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...