Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virol J ; 21(1): 181, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118175

RESUMEN

The orf virus (ORFV) poses a serious threat to the health of domestic small ruminants (i.e., sheep and goats) and humans on a global scale, causing around $150 million in annual losses to livestock industry. However, the host factors involved in ORFV infection and replication are still elusive. In this study, we compared the RNA-seq profiles of ORFV-infected or non-infected sheep testicular interstitial cells (STICs) and identified a novel host gene, potassium voltage-gated channel subfamily E member 4 (KCNE4), as a key host factor involved in the ORFV infection. Both RNA-seq data and RT-qPCR assay revealed a significant increase in the expression of KCNE4 in the infected STICs from 9 to 48 h post infection (hpi). On the other hand, the RT-qPCR assay detected a decrease in ORFV copy number in both the STICs transfected by KCNE4 siRNA and the KCNE4 knockout (KO) HeLa cells after the ORFV infection, together with a reduced fluorescence ratio of ORFV-GFP in the KO HeLa cells at 24 hpi, indicating KCNE4 to be critical for the ORFV infection. Furthermore, the attachment and internalization assays showed decreased ORFV attachment, internalization, replication, and release by the KO HeLa cells, demonstrating a potential inhibition of ORFV entry into the cells by KCNE4. Pretreatment with the KCNE4 inhibitors such as quinidine and fluoxetine significantly repressed the ORFV infection. All our findings reveal KCNE4 as a novel host regulator of the ORFV entry and replication, shedding new insight into the interactive mechanism of ORFV infection. The study also highlights the K+ channels as possible druggable targets to impede viral infection and disease.


Asunto(s)
Virus del Orf , Canales de Potasio con Entrada de Voltaje , Internalización del Virus , Animales , Humanos , Ovinos , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Células HeLa , Virus del Orf/genética , Virus del Orf/fisiología , Replicación Viral , Interacciones Huésped-Patógeno , Masculino , Ectima Contagioso/virología
2.
Artículo en Inglés | MEDLINE | ID: mdl-39142817

RESUMEN

Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated ß-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.


Asunto(s)
Altitud , Haplotipos , Animales , Ovinos/genética , Haplotipos/genética , Adaptación Fisiológica/genética , Transcriptoma/genética , Polimorfismo de Nucleótido Simple/genética , Proteómica/métodos , Globinas beta/genética , Aclimatación/genética , Tibet , Multiómica
3.
Microbiome ; 12(1): 138, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044244

RESUMEN

BACKGROUND: Scavenging indigenous village chickens play a vital role in sub-Saharan Africa, sustaining the livelihood of millions of farmers. These chickens are exposed to vastly different environments and feeds compared to commercial chickens. In this study, we analysed the caecal microbiota of 243 Ethiopian village chickens living in different altitude-dependent agro-ecologies. RESULTS: Differences in bacterial diversity were significantly correlated with differences in specific climate factors, topsoil characteristics, and supplemental diets provided by farmers. Microbiota clustered into three enterotypes, with one particularly enriched at high altitudes. We assembled 9977 taxonomically and functionally diverse metagenome-assembled genomes. The vast majority of these were not found in a dataset of previously published chicken microbes or in the Genome Taxonomy Database. CONCLUSIONS: The wide functional and taxonomic diversity of these microbes highlights their importance in the local adaptation of indigenous poultry, and the significant impacts of environmental factors on the microbiota argue for further discoveries in other agro-ecologies. Video Abstract.


Asunto(s)
Altitud , Bacterias , Pollos , Animales , Pollos/microbiología , Etiopía , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , Metagenoma , Ciego/microbiología , Microbiota , Biodiversidad , Filogenia
5.
Sci Data ; 11(1): 801, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030190

RESUMEN

The diversity in genome resources is fundamental to designing genomic strategies for local breed improvement and utilisation. These resources also support gene discovery and enhance our understanding of the mechanisms of resilience with applications beyond local breeds. Here, we report the genome sequences of 555 cattle (208 of which comprise new data) and high-density (HD) array genotyping of 1,082 samples (537 new samples) from indigenous African cattle populations. The new sequences have an average genome coverage of ~30X, three times higher than the average (~10X) of the over 300 sequences already in the public domain. Following variant quality checks, we identified approximately 32.3 million sequence variants and 661,943 HD autosomal variants mapped to the Bos taurus reference genome (ARS-UCD1.2). The new datasets were generated as part of the Centre for Tropical Livestock Genetics and Health (CTLGH) Genomic Reference Resource for African Cattle (GRRFAC) initiative, which aspires to facilitate the generation of this livestock resource and hopes for its utilisation for complete indigenous breed characterisation and sustainable global livestock improvement.


Asunto(s)
Genoma , Bovinos/genética , Animales , Genómica , África , Cruzamiento , Variación Genética
6.
BMC Genomics ; 25(1): 713, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048931

RESUMEN

BACKGROUND: Swamp-type buffaloes with varying degrees of white spotting are found exclusively in Tana Toraja, South Sulawesi, Indonesia, where spotted buffalo bulls are highly valued in accordance with the Torajan customs. The white spotting depigmentation is caused by the absence of melanocytes. However, the genetic variants that cause this phenotype have not been fully characterized. The objective of this study was to identify the genomic regions and variants responsible for this unique coat-color pattern. RESULTS: Genome-wide association study (GWAS) and selection signature analysis identified MITF as a key gene based on the whole-genome sequencing data of 28 solid and 39 spotted buffaloes, while KIT was also found to be involved in the development of this phenotype by a candidate gene approach. Alternative candidate mutations included, in addition to the previously reported nonsense mutation c.649 C > T (p.Arg217*) and splice donor mutation c.1179 + 2T > A in MITF, a nonsense mutation c.2028T > A (p.Tyr676*) in KIT. All these three mutations were located in the genomic regions that were highly conserved exclusively in Indonesian swamp buffaloes and they accounted largely (95%) for the manifestation of white spotting. Last but not the least, ADAMTS20 and TWIST2 may also contribute to the diversification of this coat-color pattern. CONCLUSIONS: The alternative mutations identified in this study affect, at least partially and independently, the development of melanocytes. The presence and persistence of such mutations may be explained by significant financial and social value of spotted buffaloes used in historical Rambu Solo ceremony in Tana Toraja, Indonesia. Several de novo spontaneous mutations have therefore been favored by traditional breeding for the spotted buffaloes.


Asunto(s)
Búfalos , Estudio de Asociación del Genoma Completo , Factor de Transcripción Asociado a Microftalmía , Proteínas Proto-Oncogénicas c-kit , Animales , Búfalos/genética , Factor de Transcripción Asociado a Microftalmía/genética , Proteínas Proto-Oncogénicas c-kit/genética , Genómica/métodos , Mutación , Fenotipo , Indonesia , Polimorfismo de Nucleótido Simple , Pigmentación/genética , Secuenciación Completa del Genoma
7.
Front Genet ; 15: 1353026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854428

RESUMEN

Ethiopia has about 52 million indigenous goats with marked phenotypic variability, which is the outcome of natural and artificial selection. Here, we obtained whole-genome sequence data of three Ethiopian indigenous goat populations (Arab, Fellata, and Oromo) from northwestern Ethiopia and analyzed their genome-wide genetic diversity, population structure, and signatures of selection. We included genotype data from four other Ethiopian goat populations (Abergelle, Keffa, Gumuz, and Woyto-Guji) and goats from Asia; Europe; and eastern, southern, western, and northern Africa to investigate the genetic predisposition of the three Ethiopian populations and performed comparative genomic analysis. Genetic diversity analysis showed that Fellata goats exhibited the lowest heterozygosity values (Ho = 0.288 ± 0.005 and He = 0.334 ± 0.0001). The highest values were observed in Arab goats (Ho = 0.310 ± 0.010 and He = 0.347 ± 4.35e-05). A higher inbreeding coefficient (FROH = 0.137 ± 0.016) was recorded for Fellata goats than the 0.105 ± 0.030 recorded for Arab and the 0.112 ± 0.034 recorded for Oromo goats. This indicates that the Fellata goat population should be prioritized in future conservation activities. The three goat populations showed the majority (∼63%) of runs of homozygosity in the shorter (100-150 Kb) length category, illustrating ancient inbreeding and/or small founder effects. Population relationship and structure analysis separated the Ethiopian indigenous goats into two distinct genetic clusters lacking phylogeographic structure. Arab, Fellata, Oromo, Abergelle, and Keffa represented one genetic cluster. Gumuz and Woyto-Guji formed a separate cluster and shared a common genetic background with the Kenyan Boran goat. Genome-wide selection signature analysis identified nine strongest regions spanning 163 genes influencing adaptation to arid and semi-arid environments (HOXC12, HOXC13, HOXC4, HOXC6, and HOXC9, MAPK8IP2), immune response (IL18, TYK2, ICAM3, ADGRG1, and ADGRG3), and production and reproduction (RARG and DNMT1). Our results provide insights into a thorough understanding of genetic architecture underlying selection signatures in Ethiopian indigenous goats in a semi-arid tropical environment and deliver valuable information for goat genetic improvement, conservation strategy, genome-wide association study, and marker-assisted breeding.

8.
Sci Bull (Beijing) ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38945748

RESUMEN

During the past 3000 years, cattle on the Qinghai-Xizang Plateau have developed adaptive phenotypes under the selective pressure of hypoxia, ultraviolet (UV) radiation, and extreme cold. The genetic mechanism underlying this rapid adaptation is not yet well understood. Here, we present whole-genome resequencing data for 258 cattle from 32 cattle breeds/populations, including 89 Tibetan cattle representing eight populations distributed at altitudes ranging from 3400 m to 4300 m. Our genomic analysis revealed that Tibetan cattle exhibited a continuous phylogeographic cline from the East Asian taurine to the South Asian indicine ancestries. We found that recently selected genes in Tibetan cattle were related to body size (HMGA2 and NCAPG) and energy expenditure (DUOXA2). We identified signals of sympatric introgression from yak into Tibetan cattle at different altitudes, covering 0.64%-3.26% of their genomes, which included introgressed genes responsible for hypoxia response (EGLN1), cold adaptation (LRP11), DNA damage repair (LATS1), and UV radiation resistance (GNPAT). We observed that introgressed yak alleles were associated with noncoding variants, including those in present EGLN1. In Tibetan cattle, three yak introgressed SNPs in the EGLN1 promoter region reduced the expression of EGLN1, suggesting that these genomic variants enhance hypoxia tolerance. Taken together, our results indicated complex adaptation processes in Tibetan cattle, where recently selected genes and introgressed yak alleles jointly facilitated rapid adaptation to high-altitude environments.

9.
J Org Chem ; 89(8): 5619-5633, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38581081

RESUMEN

Hydroxanthones have attracted considerable attention due to their significance in organic and biological chemistry, yet their synthesis remains a great challenge. In this study, a series of chromone-tethered alkenes are designed, and a radical cyclization reaction of these chromone derivatives has been achieved under photoredox conditions. The reaction uses bromodifluoroacetamides or bromodifluoroacetates as coupling partners, affording a broad range of functionalized tetrahydroxanthone products with up to 85% yields. The reaction is triggered via the generation of difluoroacetate radicals or alkene radical cations with fac-Ir(ppy)3 or 2,3,5,6-tetrakis(carbazol-9-yl)-1,4-dicyanobenzene as a photocatalyst. This approach offers access to various tetrahydroxanthone derivatives from readily available starting materials and enriches the research content of heteroarene-tethered alkenes.

10.
J Agric Food Chem ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598717

RESUMEN

Oral ingestion of probiotics is a promising approach to relieving inflammatory disease through regulating the gut microbiota. A newly discovered strain, Lactobacillus rhamnosus CY12 (LCY12), obtained from cattle-yak milk, displayed numerous probiotic properties. These included enhanced viability in low pH and bile environments, adhesion capabilities, and potent antimicrobial effects. The research aimed to explore the beneficial impacts of the novel LCY12 strain on colitis in mice induced by dextran sulfate sodium (DSS) and to elucidate the underlying molecular mechanisms. The results of the study showed that administration of LCY12 effectively helped to reduce the negative effects of DSS-induced body weight loss, disease activity index score, colon length shortening, loss of goblet cells, and overall histopathological scores in the intestines. Simultaneously, LCY12 administration significantly alleviated intestinal inflammation and safeguarded intestinal barrier integrity by enhancing IL-10 levels, while dampening IL-6, IL-1ß, and TNF-α production. Additionally, LCY12 boosted the presence of tight junction proteins. Furthermore, LCY12 hindered the TLR4/MyD88/NF-κB signaling pathway by downregulating TLR4 and MyD88 expression, inactivating phosphorylated IκBα, and preventing translocation of NF-κB p65 from the cytoplasm to the nucleus. The LCY12 also increased specific intestinal microbial communities and short-chain fatty acid (SCFA) production. Altogether, LCY12 oral administration alleviated colitis induced with DSS in mice by improving intestinal barrier function and regulating inflammatory cytokines, SCFA production, and intestinal microbiota.

11.
Beilstein J Org Chem ; 20: 212-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318462

RESUMEN

An efficient multicomponent reaction of newly designed ß-trifluoromethyl ß-diazo esters, acetonitrile, and carboxylic acids via an interrupted esterification process under copper-catalyzed conditions has been developed, which affords various unsymmetrical ß-trifluoromethyl N,N-diacyl-ß-amino esters in good to excellent yields. The reaction features mild conditions, a wide scope of ß-amino esters and carboxylic acids, and also applicability to large-scale synthesis, thus providing an efficient way for the synthesis of ß-trifluoromethyl ß-diacylamino esters. Furthermore, this reaction represents the first example of a Mumm rearrangement of ß-trifluoromethyl ß-diazo esters.

12.
Adv Sci (Weinh) ; 11(14): e2304842, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308186

RESUMEN

The identification and classification of selective sweeps are of great significance for improving the understanding of biological evolution and exploring opportunities for precision medicine and genetic improvement. Here, a domain adaptation sweep detection and classification (DASDC) method is presented to balance the alignment of two domains and the classification performance through a domain-adversarial neural network and its adversarial learning modules. DASDC effectively addresses the issue of mismatch between training data and real genomic data in deep learning models, leading to a significant improvement in its generalization capability, prediction robustness, and accuracy. The DASDC method demonstrates improved identification performance compared to existing methods and excels in classification performance, particularly in scenarios where there is a mismatch between application data and training data. The successful implementation of DASDC in real data of three distinct species highlights its potential as a useful tool for identifying crucial functional genes and investigating adaptive evolutionary mechanisms, particularly with the increasing availability of genomic data.


Asunto(s)
Genómica , Redes Neurales de la Computación , Evolución Biológica
13.
Nat Prod Bioprospect ; 14(1): 7, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200389

RESUMEN

Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.

14.
RSC Med Chem ; 15(1): 10-54, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38283214

RESUMEN

Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.

15.
Sci Adv ; 9(50): eadi6857, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091398

RESUMEN

Domestic yak, cattle, and their hybrids are fundamental to herder survival at high altitudes on the Tibetan Plateau. However, little is known about their history. Bos remains are uncommon in this region, and ancient domestic yak have not been securely identified. To identify Bos taxa and investigate their initial management, we conducted zooarchaeological analyses of 193 Bos specimens and sequenced five nuclear genomes from recently excavated assemblages at Bangga. Morphological data indicated that more cattle than yak were present. Ancient mitochondrial DNA and nuclear genome sequences identified taurine cattle and provided evidence for domestic yak and yak-cattle hybridization ~2500 years ago. Reliance on diverse Bos species and their hybrid has increased cattle adaptation and herder resilience to plateau conditions. Ancient cattle and yak at Bangga were closely related to contemporary livestock, indicating early herder legacies and the continuity of cattle and yak husbandry on the Tibetan Plateau.


Asunto(s)
ADN Mitocondrial , Genoma , Animales , Bovinos , Tibet , ADN Mitocondrial/genética , Secuencia de Bases , Hibridación Genética
16.
Microbiol Spectr ; : e0078823, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707448

RESUMEN

Anaerobic fungi (AF) inhabit the gastrointestinal tract of ruminants and play an important role in the degradation of fiber feed. However, limited knowledge is available on seasonal dynamics and inter-species differences in rumen AF community in yak and cattle under natural grazing systems. Using the random forests model, the null model, and structural equation model, we investigated the seasonal dynamics and key driving factors of fiber-associated rumen AF in grazing yak and cattle throughout the year on the Qinghai-Tibet Plateau (QTP). We found that the richness and diversity of rumen AF of grazing yak and cattle in cold season were significantly higher than those in warm season (P < 0.05). We identified 12 rumen AF genera, among which , Cyllamyces, and Orpinomyces were predominant in the rumen of both grazing yak and cattle. LEfSe and random forest analysis showed that Feramyces, Tahromyces, and Buwchfawromyces were important seasonal indicator of rumen AF in grazing yak (P < 0.05), and Caecomyces, Cyllamyces, and Piromyces in grazing cattle (P < 0.05). Null model analysis revealed that the dynamic changes of rumen AF community structure were mainly affected by deterministic factors. Notably, mantel test and structural equation model revealed that forage physical-chemical properties, including dry matter (DM), neutral detergent fiber (NDF), and hemicellulose contents (HC) were the key factors driving the seasonal variations of the rumen AF community (P < 0.05). The results revealed that forage lignocellulose was probably an important factor affecting the seasonal dynamics and inter-species differences of the rumen AF community under natural grazing conditions. IMPORTANCE The seasonal dynamics of rumen anaerobic fungi in nature grazing yak and cattle were determined during cold and warm seasons based on pasture nutritional quality and environmental data sets. The main driving factors of anaerobic fungi in yak and cattle rumen were explored by combining random forest and structural equation models. In addition, the dynamic differences in the composition of the anaerobic fungi community in the yak and cattle in different seasons were characterized. It was found that some rumen anaerobic fungi have contributed to high fiber degradation rate in yak. These novel findings improve our understanding of the association of environmental and dietary seasonal variations with anaerobic fungal community, facilitating yak adaptation to high altitude.

17.
Stress Biol ; 3(1): 8, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37676580

RESUMEN

Domestic cattle have spread across the globe and inhabit variable and unpredictable environments. They have been exposed to a plethora of selective pressures and have adapted to a variety of local ecological and management conditions, including UV exposure, diseases, and stall-feeding systems. These selective pressures have resulted in unique and important phenotypic and genetic differences among modern cattle breeds/populations. Ongoing efforts to sequence the genomes of local and commercial cattle breeds/populations, along with the growing availability of ancient bovid DNA data, have significantly advanced our understanding of the genomic architecture, recent evolution of complex traits, common diseases, and local adaptation in cattle. Here, we review the origin and spread of domestic cattle and illustrate the environmental adaptations of local cattle breeds/populations.

18.
Genome Biol ; 24(1): 211, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723525

RESUMEN

BACKGROUND: Structural variations (SVs) in individual genomes are major determinants of complex traits, including adaptability to environmental variables. The Mongolian and Hainan cattle breeds in East Asia are of taurine and indicine origins that have evolved to adapt to cold and hot environments, respectively. However, few studies have investigated SVs in East Asian cattle genomes and their roles in environmental adaptation, and little is known about adaptively introgressed SVs in East Asian cattle. RESULTS: In this study, we examine the roles of SVs in the climate adaptation of these two cattle lineages by generating highly contiguous chromosome-scale genome assemblies. Comparison of the two assemblies along with 18 Mongolian and Hainan cattle genomes obtained by long-read sequencing data provides a catalog of 123,898 nonredundant SVs. Several SVs detected from long reads are in exons of genes associated with epidermal differentiation, skin barrier, and bovine tuberculosis resistance. Functional investigations show that a 108-bp exonic insertion in SPN may affect the uptake of Mycobacterium tuberculosis by macrophages, which might contribute to the low susceptibility of Hainan cattle to bovine tuberculosis. Genotyping of 373 whole genomes from 39 breeds identifies 2610 SVs that are differentiated along a "north-south" gradient in China and overlap with 862 related genes that are enriched in pathways related to environmental adaptation. We identify 1457 Chinese indicine-stratified SVs that possibly originate from banteng and are frequent in Chinese indicine cattle. CONCLUSIONS: Our findings highlight the unique contribution of SVs in East Asian cattle to environmental adaptation and disease resistance.


Asunto(s)
Adaptación Fisiológica , Susceptibilidad a Enfermedades , Animales , Bovinos , Asia Oriental , China , Tuberculosis Bovina/genética , Adaptación Fisiológica/genética
19.
ACS Synth Biol ; 12(10): 2877-2886, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37729559

RESUMEN

The development of a contamination-free and on-site nucleic acid detection platform with high sensitivity and specificity but low-cost for the detection of pathogenic nucleic acids is critical for infectious disease diagnosis and surveillance. In this study, we combined the recombinase-aided amplification (RAA) with the exonuclease III (Exo III)-assisted signal amplification into a platform for sensitive and specific detection of nucleic acids of African swine fever virus (ASFV). We found that this platform enabled a naked eye visual detection of ASFV at a detection limit as low as 2 copies/µL in 30 min. As expected, no cross-reactivity was observed with other porcine viruses. In addition, to avoid aerosol contamination, a one-tube RAA-Exo III colorimetric assay was also established for the accurate detection of ASFV in clinical samples. Taken together, we developed a rapid, instrument-free, and low-cost Exo III-assisted RAA colorimetric-assay-based nucleic acid detection platform.


Asunto(s)
Virus de la Fiebre Porcina Africana , Ácidos Nucleicos , Animales , Porcinos , Sensibilidad y Especificidad , Colorimetría , Ácidos Nucleicos/genética , Recombinasas , Técnicas de Amplificación de Ácido Nucleico
20.
Front Genet ; 14: 1050365, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600659

RESUMEN

The Tigray region, where we found around eight per cent of the indigenous cattle population of Ethiopia, is considered as the historic centre of the country, with the ancient pre-Aksumite and Aksumite civilisations in contact with the civilisations of the Fertile Crescent and the Indian subcontinent. Here, we used whole genome sequencing data to characterise the genomic diversity, relatedness, and admixture of five cattle populations (Abergelle, Arado, Begait, Erob, and Raya) indigenous to the Tigray region of Ethiopia. We detected 28 to 29 million SNPs and 2.7 to 2.9 million indels in each population, of which 7% of SNPs and 34% of indels were novel. Functional annotation of the variants showed around 0.01% SNPs and 0.22%-0.27% indels in coding regions. Enrichment analysis of genes overlapping missense private SNPs revealed 20 significant GO terms and KEGG pathways that were shared by or specific to breeds. They included important genes associated with morphology (SCN4A, TAS1R2 and KCNG4), milk yield (GABRG1), meat quality (MMRN2, VWC2), feed efficiency (PCDH8 and SLC26A3), immune response (LAMC1, PCDH18, CELSR1, TLR6 and ITGA5), heat resistance (NPFFR1 and HTR7) and genes belonging to the olfactory gene family, which may be related to adaptation to harsh environments. Tigray indigenous cattle are very diverse. Their genome-wide average nucleotide diversity ranged from 0.0035 to 0.0036. The number of heterozygous SNPs was about 0.6-0.7 times higher than homozygous ones. The within-breed average number of ROHs ranged from 777.82 to 1000.45, with the average sum of the length of ROHs ranging from 122.01 Mbp to 163.88 Mbp. The genomic inbreeding coefficients differed among animals and breeds, reaching up to 10% in some Begait and Raya animals. Tigray indigenous cattle shared a common ancestry with Asian indicine (85.6%-88.7%) and African taurine (11.3%-14.1%) cattle, with very small, if any, European taurine introgression. This study identified high within-breed genetic diversity representing an opportunity for breeding improvement programs and, also, significant novel variants that could increase the number of known cattle variants, an important contribution to the knowledge of domestic cattle genetic diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA