Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 952: 175853, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222807

RESUMEN

Sewer pipe materials exhibit diverse inner-surface features, which can affect the attachment of biofilm and influence microbial metabolic processes. To investigate the role of the type of pipe material on the composition and metabolic capabilities of the adhering microorganisms, three sets of urban sewers (High-Density Polyethylene Pipe (HDPE), Ductile Iron Pipe (DIP), and Concrete Pipe (CP)) were constructed. Measurements of biofilm thickness and environmental factors revealed that the thickest biofilm in CP pipes reached 2000 µm, with ORP values as low as -325 mV, indicating a more suitable anaerobic microbial habitat. High-throughput sequencing showed similar relative abundances of genera related to carbon and sulfur metabolism in the DIP and CP pipes, whereas HDPE exhibited only half the relative abundance compared to that found in the other pipes. To explore the impact of pipe materials on the mechanisms of microbial response, a metagenomic approach was used to investigate the biological transformation of carbon and sulfur in wastewater. The annotations of the crucial enzyme-encoding genes related to methyl coenzyme M and sulfite reductase in DIP and CP were 50 and 110, respectively, whereas HDPE exhibited lower counts (25 and 70, respectively). This resulted in significantly lower carbon and sulfur metabolism capabilities in the HDPE biofilm than in the other two pipes. The stability of wastewater quality during the transmission process in HDPE pipes reduces the metabolic generation of toxic and harmful gases within the pipes, favoring the preservation of carbon sources for sewer systems. This study reveals the variations in carbon and sulfur metabolism in wastewater pipe systems influenced by pipe materials and provides insights for designing future sewers.


Asunto(s)
Biopelículas , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
2.
Sci Total Environ ; 952: 175929, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39226960

RESUMEN

The scouring and migration of sediments in sewer systems are the key contributors to overflow pollution. Both physical and biological factors affect the erosion and migration of layered sediments. However, the functional characteristics of these factors and their quantification process still need to be further explored. In this study, the physical form and biological metabolism of the sediment are coupled, and the suspension mechanism under the dual action is proposed systematically and deeply. The influence coefficient of scour initiation was redefined as A^/prime, where the physical factors were particle size and mass, and the biological factors were bio-viscosity and internal cavitation. The bio-viscosity of layered sediment particles is provided by Extracellular Polymeric Substances (EPS). The slope value of |ΔD/-Δf| (ΔD: Dissipation; Δf: frequency) of surface EPS decreased from 0.489 to 0.315 when Quartz Crystal Microbalance with Dissipation (QCM-D) was used to analyse EPS viscosity, indicating that biological activities formed a dense biofilm on the sediment surface and enhanced the bond between particles. Meanwhile, by monitoring the accumulation density of sediments at different depths, it was found that the packing density of the bottom layer decreased from 1.50 to 1.45 g/cm3, which was mainly due to the internal cavitation caused by microorganism consuming organic matrix and releasing H2S and CH4. The delamination difference of EPS results in the uneven change of adhesion between different layers. This, combined with the internal erosion characteristics triggered by microbial stratified metabolism, collectively constitutes the biological effects on the sediment structure. Finally, the coupling mechanism of particle distribution and bio-viscous-cavitation erosion was formed, and the correctness of the formula was verified by repeated experiments, which proved the agreement between the theory and the practice and provided a scientific method for systematically analysing the erosion and migration law of sediment in the sewer system.

3.
Chemosphere ; 351: 141159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199499

RESUMEN

Fungi are the significant components of the sewer ecology system which can consume substances and exhibit pathogenicity. However, the characteristics of fungi formation and metabolism in the complex sewer environment have not been revealed in depth. In this study, gradient flow conditions were conducted in a pilot sewer and the formation characteristics of fungi were synthetically investigated. The results showed that the low flow rate at 0.1-0.4 m/s led to the loose morphology of biofilms, while the overly loose environment did not allow fungi communities to thrive in sewer. The dense biofilms were found at the middle flow condition (0.4-0.6 m/s), and the fungal communities with degradation functions were exuberant at this condition (such as Tremellales with relative abundance of 6.18% and Talaromyces with relative abundance of 6.51%). In particular, eleven kinds of fungi with known pathogenicity of the sewer biofilm were found in this study, and it is worth noting that the abundance of pathogenic fungi at medium flow rates is significantly higher than that at other flow conditions (higher than 10 %). While, excessive flow shear force (0.8-1.2 m/s) led to biofilm shedding which caused hindering the proper generation of fungi. In summary, the pollutant transformation and pathogenic exposure conducted by fungi communities could affect the sewer management process significantly, and this study could provide research foundation for wastewater quality prediction and management of pathogenic risk in sewer systems.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Virulencia , Biopelículas , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA