Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8163, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071210

RESUMEN

Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.


Asunto(s)
Músculo Esquelético , Células Madre , Humanos , Animales , Porcinos , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciación Celular , Carne , Células Cultivadas
2.
Cell Prolif ; 56(11): e13487, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37190930

RESUMEN

Genome integration-free pig induced pluripotent stem cells (iPSCs) bring tremendous value in pre-clinical testing of regenerative medicine, as well as conservation and exploitation of endangered or rare local pig idioplasmatic resources. However, due to a lack of appropriate culture medium, efficient induction and stable maintenance of pig iPSCs with practical value remains challenging. Here, we established an efficient induction system for exogenous gene-independent iPSCs under chemically defined culture condition previously used for generation of stable pig pre-gastrulation epiblast stem cells (pgEpiSCs). WNT suppression was found to play an essential role in establishment of exogenous gene-independent iPSCs. Strikingly, stable integration-free pig iPSCs could be established from pig somatic cells using episomal vectors in this culture condition. The iPSCs had pluripotency features and transcriptome characteristics approximating pgEpiSCs. More importantly, this induction system may be used to generate integration-free iPSCs from elderly disabled rare local pig somatic cells and the iPSCs could be gene-edited and used as donor cells for nuclear transfer. Our results provide novel insights into potential applications for genetic breeding of livestock species and pre-clinical evaluation of regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Porcinos , Animales , Anciano , Plásmidos , Transcriptoma , Reprogramación Celular
3.
Org Lett ; 25(22): 4016-4021, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37249258

RESUMEN

The step- and atom-efficient dimerization strategy is frequently used in nature to build structural complexity and diversity. We propose the rationale and structural features of the versatile monomers that are responsible for "diversity through dimerization". Using 5-FAM-maleimide combined with a UHPLC-MS/MS-FBMN workflow, we successfully identified a diverse set of dimeric natural products from fungus Panus rudis F01315, in which all four complex 4'5-ring scaffolds are derived from one monomeric epoxyquinol and endowed with functional diversity.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Productos Biológicos/química , Dimerización , Hongos
5.
Nat Commun ; 14(1): 315, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658155

RESUMEN

N6-methyladenosine (m6A) has been demonstrated to regulate RNA metabolism and various biological processes, including gametogenesis and embryogenesis. However, the landscape and function of m6A at single cell resolution have not been extensively studied in mammalian oocytes or during pre-implantation. In this study, we developed a single-cell m6A sequencing (scm6A-seq) method to simultaneously profile the m6A methylome and transcriptome in single oocytes/blastomeres of cleavage-stage embryos. We found that m6A deficiency leads to aberrant RNA clearance and consequent low quality of Mettl3Gdf9 conditional knockout (cKO) oocytes. We further revealed that m6A regulates the translation and stability of modified RNAs in metaphase II (MII) oocytes and during oocyte-to-embryo transition, respectively. Moreover, we observed m6A-dependent asymmetries in the epi-transcriptome between the blastomeres of two-cell embryo. scm6A-seq thus allows in-depth investigation into m6A characteristics and functions, and the findings provide invaluable single-cell resolution resources for delineating the underlying mechanism for gametogenesis and early embryonic development.


Asunto(s)
Oocitos , Oogénesis , Animales , Oocitos/metabolismo , Desarrollo Embrionario/genética , Transcriptoma/genética , ARN/metabolismo , Mamíferos/genética
6.
Biol Reprod ; 107(1): 226-236, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35678320

RESUMEN

Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multilineage differentiation potential, which are crucial for basic research and biomedical science. Establishment of PSCs with defined features was previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding, and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogramed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent-regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs. Even though challenges remain in the field of porcine stem cells, these progress and viewpoints would provide guidance in future research direction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Desarrollo Embrionario , Ingeniería Genética , Humanos , Ratones , Modelos Animales , Porcinos
7.
J Integr Plant Biol ; 64(6): 1229-1245, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35352470

RESUMEN

Auxin is unique among plant hormones in that its function requires polarized transport across plant cells. A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H+ gradient across the plasma membrane (PM) established by PM H+ -adenosine triphosphatases (ATPases). However, a classical genetic approach by mutations in PM H+ -ATPase members did not result in the ablation of polar auxin distribution, possibly due to functional redundancy in this gene family. To confirm the crucial role of PM H+ -ATPases in the polar auxin transport model, we employed a chemical genetic approach. Through a chemical screen, we identified protonstatin-1 (PS-1), a selective small-molecule inhibitor of PM H+ -ATPase activity that inhibits auxin transport. Assays with transgenic plants and yeast strains showed that the activity of PM H+ -ATPases affects auxin uptake as well as acropetal and basipetal polar auxin transport. We propose that PS-1 can be used as a tool to interrogate the function of PM H+ -ATPases. Our results support the chemiosmotic model in which PM H+ -ATPase itself plays a fundamental role in polar auxin transport.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo
8.
Cell Res ; 32(4): 383-400, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34848870

RESUMEN

Pig epiblast-derived pluripotent stem cells are considered to have great potential and broad prospects for human therapeutic model development and livestock breeding. Despite ongoing attempts since the 1990s, no stably defined pig epiblast-derived stem cell line has been established. Here, guided by insights from a large-scale single-cell transcriptome analysis of pig embryos from embryonic day (E) 0 to E14, specifically, the tracing of pluripotency changes during epiblast development, we developed an in vitro culture medium for establishing and maintaining stable pluripotent stem cell lines from pig E10 pregastrulation epiblasts (pgEpiSCs). Enabled by chemical inhibition of WNT-related signaling in combination with growth factors in the FGF/ERK, JAK/STAT3, and Activin/Nodal pathways, pgEpiSCs maintain their pluripotency transcriptome features, similar to those of E10 epiblast cells, and normal karyotypes after more than 240 passages and have the potential to differentiate into three germ layers. Strikingly, ultradeep in situ Hi-C analysis revealed functional impacts of chromatin 3D-spatial associations on the transcriptional regulation of pluripotency marker genes in pgEpiSCs. In practice, we confirmed that pgEpiSCs readily tolerate at least three rounds of successive gene editing and generated cloned gene-edited live piglets. Our findings deliver on the long-anticipated promise of pig pluripotent stem cells and open new avenues for biological research, animal husbandry, and regenerative biomedicine.


Asunto(s)
Estratos Germinativos , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Línea Celular , Porcinos , Transcriptoma
9.
Cell Death Dis ; 12(11): 989, 2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34689175

RESUMEN

Proper follicle development is very important for the production of mature oocytes, which is essential for the maintenance of female fertility. This complex biological process requires precise gene regulation. The most abundant modification of mRNA, N6-methyladenosine (m6A), is involved in many RNA metabolism processes, including RNA splicing, translation, stability, and degradation. Here, we report that m6A plays essential roles during oocyte and follicle development. Oocyte-specific inactivation of the key m6A methyltransferase Mettl3 with Gdf9-Cre caused DNA damage accumulation in oocytes, defective follicle development, and abnormal ovulation. Mechanistically, combined RNA-seq and m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) data from oocytes revealed, that we found METTL3 targets Itsn2 for m6A modification and then enhances its stability to influence the oocytes meiosis. Taken together, our findings highlight the crucial roles of mRNA m6A modification in follicle development and coordination of RNA stabilization during oocyte growth.


Asunto(s)
Adenosina/análogos & derivados , Metiltransferasas/metabolismo , Oocitos/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Adenosina/metabolismo , Animales , Femenino , Ratones
10.
Methods Mol Biol ; 2239: 1-18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226609

RESUMEN

Porcine cloning technology can be used to produce progenies genetically identical to the donor cells from high-quality breeding pigs. In addition, genetically modified pigs have been produced by somatic cell nuclear transfer using genetically modified porcine fetal fibroblasts. The method of preparing genetically modified pigs is critical for establishing pig models for human diseases, and for generating donor animals for future xenotransplantation. This chapter describes detailed procedures for generating cloned pigs using fetal fibroblasts as nuclear donors.


Asunto(s)
Clonación de Organismos/métodos , Transferencia de Embrión/métodos , Feto/citología , Fibroblastos/citología , Técnicas de Transferencia Nuclear , Oocitos/citología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Clonación de Organismos/instrumentación , Criopreservación/métodos , Femenino , Embarazo , Porcinos
11.
Stem Cell Res Ther ; 11(1): 505, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246502

RESUMEN

BACKGROUND: Despite years of research, porcine-induced pluripotent stem cells (piPSCs) with germline chimeric capacity have not been established. Furthermore, the key transcription factors (TFs) defining the naïve state in piPSCs also remain elusive, even though TFs in the inner cell mass (ICM) are believed to be key molecular determinants of naïve pluripotency. In this study, interferon regulatory factor 1 (IRF-1) was screened to express higher in ICM than trophectoderm (TE). But the impact of IRF-1 on maintenance of pluripotency in piPSCs was not determined. METHODS: Transcriptome profiles of the early ICM were analyzed to determine highly interconnected TFs. Cells carrying these TFs' reporter were used to as donor cells for somatic cell nuclear transfer to detect expression patterns in blastocysts. Next, IRF1-Flag was overexpressed in DOX-hLIF-2i piPSCs and AP staining, qRT-PCR, and RNA-seq were conducted to examine the effect of IRF-1 on pluripotency. Then, the expression of IRF-1 in DOX-hLIF-2i piPSCs was labeled by GFP and qRT-PCR was conducted to determine the difference between GFP-positive and GFP-negative cells. Next, ChIP-Seq was conducted to identify genes target by IRF-1. Treatment with IL7 in wild-type piPSCs and STAT3 phosphorylation inhibitor in IRF-1 overexpressing piPSCs was conducted to confirm the roles of JAK-STAT3 signaling pathway in IRF-1's regulation of pluripotency. Moreover, during reprogramming, IRF-1 was overexpressed and knocked down to determine the change of reprogramming efficiency. RESULTS: IRF-1 was screened to be expressed higher in porcine ICM than TE of d6~7 SCNT blastocysts. First, overexpression of IRF-1 in the piPSCs was observed to promote the morphology, AP staining, and expression profiles of pluripotency genes as would be expected when cells approach the naïve state. Genes, KEGG pathways, and GO terms related to the process of differentiation were also downregulated. Next, in the wild-type piPSCs, high-level fluorescence activated by the IRF-1 promoter was associated with higher expression of naïve related genes in piPSCs. Analysis by ChIP-Seq indicated that genes related to the JAK-STAT pathway, and expression of IL7 and STAT3 were activated by IRF-1. The inhibitor of STAT3 phosphorylation was observed could revert the expression of primed genes in IRF-1 overexpressing cells, but the addition of IL7 in culture medium had no apparent change in the cell morphology, AP staining results, or expression of pluripotency related genes. In addition, knockdown of IRF-1 during reprogramming appeared to reduce reprogramming efficiency, whereas overexpression exerted the converse effect. CONCLUSION: The IRF-1 expressed in the ICM of pigs' early blastocyst enhances the pluripotency of piPSCs, in part through promoting the JAK-STAT pathway.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Blastocisto , Factor 1 Regulador del Interferón/genética , Porcinos , Transcriptoma
12.
Stem Cell Reports ; 15(2): 529-545, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32679066

RESUMEN

The pluripotency of stem cells determines their developmental potential. While the pluripotency states of pluripotent stem cells are variable and interconvertible, the mechanisms underlying the acquisition and maintenance of pluripotency remain largely elusive. Here, we identified that methylenetetrahydrofolate dehydrogenase (NAD+-dependent), methenyltetrahydrofolate cyclohydrolase (Mthfd2) plays an essential role in maintaining embryonic stem cell pluripotency and promoting complete reprogramming of induced pluripotent stem cells. Mechanistically, in mitochondria, Mthfd2 maintains the integrity of the mitochondrial respiratory chain and prevents mitochondrial dysfunction. In the nucleus, Mthfd2 stabilizes the phosphorylation of EXO1 to support DNA end resection and promote homologous recombination repair. Our results revealed that Mthfd2 is a dual-function factor in determining the pluripotency of pluripotent stem cells through both mitochondrial and nuclear pathways, ultimately ensuring safe application of pluripotent stem cells.


Asunto(s)
Aminohidrolasas/metabolismo , Reparación del ADN , Células Madre Pluripotentes Inducidas/metabolismo , Meteniltetrahidrofolato Ciclohidrolasa/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Mitocondrias/metabolismo , Complejos Multienzimáticos/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Núcleo Celular/metabolismo , Autorrenovación de las Células/genética , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucólisis , Meteniltetrahidrofolato Ciclohidrolasa/deficiencia , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Fosforilación Oxidativa , Fosforilación , Unión Proteica
13.
Stem Cell Res Ther ; 11(1): 67, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070424

RESUMEN

BACKGROUND: NANOG functions as the gateway for the generation of pluripotent stem cells (PSCs) in mice and humans. NANOG is a transcription factor highly expressed in pig pre-implantation embryos, indicating that it is a conserved pluripotency-associated factor. However, pig NANOG reporter PSCs have yet to be established, and the regulation of pluripotency by NANOG is not fully understood in this animal. METHODS: In this study, pig NANOG tdTomato knock-in reporter positive PC-iPS cells were established using CRISPR/Cas9. The resulting cell line was treated with several cytokines and their corresponding inhibitors to identify pathways that regulate NANOG expression. The pathways examined were LIF (leukemia inhibitory factor)/IL6 (interleukin 6)-STAT3, FGF (fibroblast growth factor)/ERK, IGF1 (insulin-like growth factor 1)/PIP3 (phosphoinositide 3-kinase)-AKT, Activin A/SMAD, and BMP4 (bone morphogenetic proteins)/SMAD. RESULTS: Our experiments showed that the Activin A/SMAD pathway is directly associated with activation of NANOG expression in the pig, as is also the case in mice and humans. Activin A directly regulates the expression of pig NANOG via SMAD2/3; inhibition of this pathway by SB431542 resulted in inhibition of NANOG expression. CONCLUSIONS: Our results show that Activin A plays an important regulatory role in NANOG-mediated pluripotency in pig iPS cells. Activin A treatment may be therefore an effective method for de novo derivation of authentic embryonic stem cells (ESCs) from pig pre-implantation embryos.


Asunto(s)
Activinas/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Homeótica Nanog/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular , Humanos , Transducción de Señal , Porcinos
14.
Biochem Biophys Res Commun ; 520(3): 651-656, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31629472

RESUMEN

Melanocortin 4 receptor (MC4R)-deficient mice had been used for several years to study human nonalcoholic steatohepatitis (NASH). However, although liver pathologic and biochemical indicators have been examined, mice models do not always faithfully display the phenotype of the human disease. In this study, we investigated the MC4R knockout phenotype in miniature pigs. We found that pigs lacking MC4R exhibited hyperorexia, insulin resistance, hyperinsulinemia, disordered lipid metabolism and their livers accumulated significant amounts of fat. We have shown that deletion of MC4R results in hyperphagia and increased body fat, ultimately leading to hepatic steatosis without atherogenic diet.


Asunto(s)
Hiperfagia/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Receptor de Melanocortina Tipo 4/deficiencia , Adipocitos/patología , Tejido Adiposo/patología , Animales , Animales Modificados Genéticamente , Aumento de la Célula , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Femenino , Técnicas de Inactivación de Genes , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Embarazo , Receptor de Melanocortina Tipo 4/genética , Porcinos , Porcinos Enanos
15.
Stem Cell Res Ther ; 10(1): 193, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248457

RESUMEN

BACKGROUND: Pigs have emerged as one of the most popular large animal models in biomedical research, which in many cases is considered as a superior choice over rodent models. In addition, transplantation studies using pig pluripotent stem (PS) cell derivatives may serve as a testbed for safety and efficacy prior to human trials. Recently, it has been shown that mouse and human PS cells cultured in LCDM (recombinant human LIF, CHIR 99021, (S)-(+)-dimethindene maleate, minocycline hydrochloride) medium exhibited extended developmental potential (designated as extended pluripotent stem cells, or EPS cells), which could generate both embryonic and extraembryonic tissues in chimeric mouse conceptus. Whether stable pig induced pluripotent stem (iPS) cells can be generated in LCDM medium and their chimeric competency remains unknown. METHODS: iPS cells were generated by infecting pig pericytes (PC) and embryonic fibroblasts (PEFs) with a retroviral vector encoding Oct4, Sox2, Klf4, and cMyc reprogramming factors and subsequently cultured in a modified LCDM medium. The pluripotency of PC-iPS and PEF-iPS cells was characterized by examining the expression of pluripotency-related transcription factors and surface markers, transcriptome analysis, and in vitro and in vivo differentiation capabilities. Chimeric contribution of PC-iPS cells to mouse and pig conceptus was also evaluated with fluorescence microscopy, flow cytometry, and PCR analysis. RESULTS: In this study, using a modified version of the LCDM medium, we successfully generated iPS cells from both PCs and PEFs. Both PC-iPS and PEF-iPS cells maintained the stable "dome-shaped" morphology and genome stability after long-term culture. The immunocytochemistry analyses revealed that both PC-iPS and PEF-iPS cells expressed OCT4, SOX2, and SALL4, but only PC-iPS cells expressed NANOG and TRA-1-81 (faint). PC-iPS and PEF-iPS cells could be differentiated into cell derivatives of all three primary germ layers in vitro. The transcriptome analysis showed that PEF-iPS and PC-iPS cells clustered with pig ICM, Heatmap and volcano plot showed that there were 1475 differentially expressed genes (DEGs) between PC-iPS and PEF-iPS cells (adjusted p value < 0.1), and the numbers of upregulated genes and downregulated genes in PC-iPS cells were 755 and 720, respectively. Upregulated genes were enriched with GO terms including regulation of stem cell differentiation, proliferation, development, and maintenance. And KEGG pathway enrichment in upregulated genes revealed Wnt, Jak-STAT, TGF-ß, P53, and MAPK stem cell signaling pathways. Fluorescence microscopy and genomic PCR analyses using pig mtDNA-specific and GFP primers showed that the PC-iPS cell derivatives could be detected in both mouse and pig pre-implantation blastocysts and post-implantation conceptuses. Quantitative analysis via flow cytometry revealed that the chimeric contribution of pig PC-iPS cells in mouse conceptus was up to 0.04%. CONCLUSIONS: Our findings demonstrate that stable iPS cells could be generated in LCDM medium, which could give rise to both embryonic and extraembryonic cells in vivo. However, the efficiency and level of chimeric contribution of pig LCDM-iPS cells were found low.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/fisiología , Transferencia de Embrión , Cuerpos Embrioides/citología , Fibroblastos/citología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Pericitos/citología , Células Madre Pluripotentes/metabolismo , Porcinos
16.
Biochem J ; 476(11): 1585-1604, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31036718

RESUMEN

Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 (Slc25a36) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, Slc25a36 was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of Slc25a36 was characterized as a maintenance factor of mESCs pluripotency. Slc25a36 deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers (Pou5f1, Sox2, Nanog, and Utf1) decreased, while that of key TE genes (Cdx2, Gata3, and Hand1) increased. Cdx2-positive cells emerged in Slc25a36-deficient colonies under trophoblast stem cell culture conditions. As a result of Slc25a36 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of Slc25a36, as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.


Asunto(s)
Glutatión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Animales , Factor de Transcripción CDX2/metabolismo , Diferenciación Celular/genética , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Adhesiones Focales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
17.
Nat Commun ; 10(1): 496, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700702

RESUMEN

Spatially ordered embryo-like structures self-assembled from blastocyst-derived stem cells can be generated to mimic embryogenesis in vitro. However, the assembly system and developmental potential of such structures needs to be further studied. Here, we devise a nonadherent-suspension-shaking system to generate self-assembled embryo-like structures (ETX-embryoids) using mouse embryonic, trophoblast and extra-embryonic endoderm stem cells. When cultured together, the three cell types aggregate and sort into lineage-specific compartments. Signaling among these compartments results in molecular and morphogenic events that closely mimic those observed in wild-type embryos. These ETX-embryoids exhibit lumenogenesis, asymmetric patterns of gene expression for markers of mesoderm and primordial germ cell precursors, and formation of anterior visceral endoderm-like tissues. After transplantation into the pseudopregnant mouse uterus, ETX-embryoids efficiently initiate implantation and trigger the formation of decidual tissues. The ability of the three cell types to self-assemble into an embryo-like structure in vitro provides a powerful model system for studying embryogenesis.


Asunto(s)
Blastocisto/citología , Embrión de Mamíferos/citología , Células Madre/citología , Animales , Implantación del Embrión , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Ratones
18.
Artículo en Inglés | MEDLINE | ID: mdl-30568797

RESUMEN

Meat and milk production needs to increase ~ 70-80% relative to its current levels for satisfying the human needs in 2050. However, it is impossible to achieve such genetic gain by conventional animal breeding systems. Based on recent advances with regard to in vitro induction of germ cell from pluripotent stem cells, herein we propose a novel embryo-stem cell breeding system. Distinct from the conventional breeding system in farm animals that involves selecting and mating individuals, the novel breeding system completes breeding cycles from parental to offspring embryos directly by selecting and mating embryos in a dish. In comparison to the conventional dairy breeding scheme, this system can rapidly achieve 30-40 times more genetic gain by significantly shortening generation interval and enhancing selection intensity. However, several major obstacles must be overcome before we can fully use this system in livestock breeding, which include derivation and mantaince of pluripotent stem cells in domestic animals, as well as in vitro induction of primordial germ cells, and subsequent haploid gametes. Thus, we also discuss the potential efforts needed in solving the obstacles for application this novel system, and elaborate on their groundbreaking potential in livestock breeding. This novel system would provide a revolutionary animal breeding system by offering an unprecedented opportunity for meeting the fast-growing meat and milk demand of humans.

19.
Sci Rep ; 8(1): 6649, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703926

RESUMEN

Long non-coding RNAs (lncRNA) play a key role in the orchestration of transcriptional regulation during development and many other cellular processes. The importance of the regulatory co-expression network was highlighted in the identification of the mechanism of these processes in humans and mice. However, elucidation of the properties of porcine lncRNAs involved in the regulatory network during pre-implantation embryonic development and fibroblast reprogramming to induced pluripotent stem cell (iPSC) has been limited to date. Using a weighted gene co-expression network analysis, we constructed the regulatory network and determined that the novel lncRNAs were functionally involved in key events of embryonic development during the pre-implantation period; moreover, reprogramming could be delineated by a small number of potentially functional modules of co-expressed genes. These findings indicate that lncRNAs may be involved in the transcriptional regulation of zygotic genome activation, first lineage segregation and somatic reprogramming to pluripotency. Furthermore, we performed a conservation and synteny analysis with the significant lncRNAs involved in these vital events and validated the results via experimental assays. In summary, the current findings provide a valuable resource to dissect the protein coding gene and lncRNA regulatory networks that underlie the progressive development of embryos and somatic reprogramming.


Asunto(s)
Blastocisto/fisiología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , ARN Largo no Codificante/metabolismo , Porcinos/embriología , Animales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes
20.
Biol Reprod ; 99(2): 283-292, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29546319

RESUMEN

After zygotic genome activation and lineage specification, zygotes develop into late blastocysts comprising three distinct cell types. The molecular mechanisms underlying this progress are largely unknown in pigs. Here, we intended to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the porcine blastocysts. Using a quantitative microfluidics approach in single cells, we detected mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency simultaneously in 480 individual cells derived from porcine preimplantation embryos. The developmental transitions can be distinguished based on distinctive gene expression profiles, and we identified paired box 6 (PAX6) and aquaporin 3 (AQP3) expressed in early and late developmental stages, respectively. Two lineages can be segregated in porcine early and late blastocysts by the expression patterns of lineage-specific genes such as DAB2, clathrin adaptor protein (DAB2) for trophectoderm (TE), platelet derived growth factor receptor alpha (PDGFRA), Nanog homeobox (NANOG), fibronectin 1 (FN1), hepatocyte nuclear factor 4 alpha (HNF4A), goosecoid homeobox (GSC), nuclear receptor subfamily 5 group A member 2 (NR5A2), and lysine acetyltransferase 6A (KAT6A; previously known as MYST3) for inner cell mass (ICM). However, the epiblast and primitive endoderm cannot be identified in late blastocysts, and those TE or ICM lineage-specific genes were low expressed in blastomeres from the morula. Our results shed light on early cell fate determination in porcine preimplantation embryos and offer theoretical support for deriving porcine embryonic stem cells.


Asunto(s)
Blastocisto/metabolismo , Linaje de la Célula/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Acuaporina 3/genética , Acuaporina 3/metabolismo , Desarrollo Embrionario/fisiología , Células Madre Embrionarias/citología , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...