Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(44): 62306-62320, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34191263

RESUMEN

Progesterone, an endocrine-disrupting chemical, has been frequently detected in wastewater for decades, posing a serious threat to ecological and human health. However, it is still a challenge to achieve the effective detection of progesterone in complex matrices water samples. In this study, a novel adsorbent CNT@CS/P(MAA) was prepared by grafting methacrylic polymers on the surface of modified carbon nanomaterials. Compared with other reported materials, the hybrid carbon nanomaterial could selectively identify the progesterone in the complex industrial pharmaceutical wastewater, and its adsorption performance is almost independent of the pH and environmental temperature. In addition, this nanomaterial could be reused with a good recovery rate. The prepared nanomaterials were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, nitrogen adsorption and desorption experiments, and thermogravimetric analysis. The results confirmed that the methacrylic polymers and chitosan layer were successfully grafted on the surface of carbon nanotubes. Adsorption isotherms, adsorption kinetics, and selectivity tests showed that CNT@CS/P(MAA) had a high adsorption capacity (44.45 mg·g-1), a fast adsorption rate and a satisfied selectivity for progesterone. Then, CNT@CS/P(MAA) was used as solid phase extraction sorbent and combined with HPLC to enrich progesterone from the wastewater samples. Under the optimum conditions, a good linearity was obtained with the correlation coefficient was 0.9998, and the limit of detection was 0.003 ng·mL-1. Therefore, this method could be used for the selective and effective detection of progesterone in industrial wastewater with complex substrates and provided a new method for the detection of progesterone in other environmental waters.


Asunto(s)
Nanotubos de Carbono , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Adsorción , Humanos , Progesterona , Extracción en Fase Sólida , Espectroscopía Infrarroja por Transformada de Fourier , Aguas Residuales , Contaminantes Químicos del Agua/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-32590216

RESUMEN

Fluconazole and voriconazole are the two broad-spectrum triazole antifungals. The present work described the fabrication method for the synthesis of the amino-modified magnetic metal-organic framework. This material was applied as a pre-sample treatment sorbent for the selective extraction of fluconazole and voriconazole in rat plasma samples. The material was fabricated by the chemical bonding approach method and was characterized by different parameters. The factors which affect the extraction efficiency of the sorbent material were also optimized in this study. Due to the optimization of solid-phase extraction conditions, the nonspecific interaction was reduced and the extraction recoveries of target drugs were increased in plasma samples. The extraction method was combined with the HPLC-UV method for the analysis. Excellent linearity (0.1-25 µg/mL), detections (0.02, 0.03 µg/mL) and quantification limits (0.04, 0.05 µg/mL) were resulted for fluconazole and voriconazole respectively. The maximum recoveries from spiked plasma samples of fluconazole and voriconazole were 86.8% and 78.6% and relative standard deviation were 0.9-2.8% and 2.2-3.6% respectively. Moreover, this sorbent material was used multiple times which was an improvement over single-use commercial sorbent materials. This validated method has practical potential for the simultaneous determination of these drugs in therapeutic drug monitoring studies as well as for routine pharmacokinetic evaluations.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fluconazol , Extracción en Fase Sólida/métodos , Voriconazol , Animales , Fluconazol/sangre , Fluconazol/aislamiento & purificación , Límite de Detección , Modelos Lineales , Nanopartículas de Magnetita/química , Estructuras Metalorgánicas/química , Ratas , Reproducibilidad de los Resultados , Voriconazol/sangre , Voriconazol/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...