Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Stem Cells Transl Med ; 13(4): 387-398, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38321361

RESUMEN

The transplantation of spinal cord progenitor cells (SCPCs) derived from human-induced pluripotent stem cells (iPSCs) has beneficial effects in treating spinal cord injury (SCI). However, the presence of residual undifferentiated iPSCs among their differentiated progeny poses a high risk as these cells can develop teratomas or other types of tumors post-transplantation. Despite the need to remove these residual undifferentiated iPSCs, no specific surface markers can identify them for subsequent removal. By profiling the size of SCPCs after a 10-day differentiation process, we found that the large-sized group contains significantly more cells expressing pluripotent markers. In this study, we used a sized-based, label-free separation using an inertial microfluidic-based device to remove tumor-risk cells. The device can reduce the number of undifferentiated cells from an SCPC population with high throughput (ie, >3 million cells/minute) without affecting cell viability and functions. The sorted cells were verified with immunofluorescence staining, flow cytometry analysis, and colony culture assay. We demonstrated the capabilities of our technology to reduce the percentage of OCT4-positive cells. Our technology has great potential for the "downstream processing" of cell manufacturing workflow, ensuring better quality and safety of transplanted cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Médula Espinal/patología , Diferenciación Celular/fisiología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología
2.
Am J Sports Med ; 52(2): 503-515, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38186352

RESUMEN

BACKGROUND: The functional heterogeneity of culture-expanded mesenchymal stem cells (MSCs) has hindered the clinical application of MSCs. Previous studies have shown that MSC subpopulations with superior chondrogenic capacity can be isolated using a spiral microfluidic device based on the principle of inertial cell focusing. HYPOTHESIS: The delivery of microfluidic-enriched chondrogenic MSCs that are consistent in size and function will overcome the challenge of the functional heterogeneity of expanded MSCs and will significantly improve MSC-based cartilage repair. STUDY DESIGN: Controlled laboratory study. METHODS: A next-generation, fully automated multidimensional double spiral microfluidic device was designed to provide more refined and efficient isolation of MSC subpopulations based on size. Analysis of in vitro chondrogenic potential and RNA sequencing was performed on size-sorted MSC subpopulations. In vivo cartilage repair efficacy was demonstrated in an osteochondral injury model in 12-week-old rats. Defects were implanted with MSC subpopulations (n = 6 per group) and compared with those implanted with unsegregated MSCs (n = 6). Osteochondral repair was assessed at 6 and 12 weeks after surgery by histological, micro-computed tomography, and mechanical analysis. RESULTS: A chondrogenic MSC subpopulation was efficiently isolated using the multidimensional double spiral device. RNA sequencing revealed distinct transcriptomic profiles and identified differential gene expression between subpopulations. The delivery of a chondrogenic MSC subpopulation resulted in improved cartilage repair, as indicated by histological scoring, the compression modulus, and micro-computed tomography of the subchondral bone. CONCLUSION: We have established a rapid, label-free, and reliable microfluidic protocol for more efficient size-based enrichment of a chondrogenic MSC subpopulation. Our proof-of-concept in vivo study demonstrates the enhanced cartilage repair efficacy of these enriched chondrogenic MSCs. CLINICAL RELEVANCE: The delivery of microfluidic-enriched chondrogenic MSCs that are consistent in size and function can overcome the challenge of the functional heterogeneity of expanded MSCs, resulting in significant improvement in MSC-based cartilage repair. The availability of such rapid, label-free enriched chondrogenic MSCs can enable better cell therapy products for cartilage repair with improved treatment outcomes.


Asunto(s)
Cartílago Articular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Ratas , Cartílago Articular/cirugía , Microfluídica , Microtomografía por Rayos X , Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas/métodos , Condrogénesis
3.
Anal Chem ; 95(39): 14608-14615, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37733929

RESUMEN

Online monitoring of monoclonal antibody product titers throughout biologics process development and production enables rapid bioprocess decision-making and process optimization. Conventional analytical methods, including high-performance liquid chromatography and turbidimetry, typically require interfacing with an automated sampling system capable of online sampling and fractionation, which suffers from increased cost, a higher risk of failure, and a higher mechanical complexity of the system. In this study, a novel nanofluidic system for continuous direct (no sample preparation) IgG titer measurements was investigated. Tumor necrosis factor α (TNF-α), conjugated with fluorophores, was utilized as a selective binder for adalimumab in the unprocessed cell culture supernatant. The nanofluidic device can separate the bound complex from unbound TNF-α and selectively concentrate the bound complex for high-sensitivity detection. Based on the fluorescence intensity from the concentrated bound complex, a fluorescence intensity versus titer curve can be generated, which was used to determine the titer of samples from filtered, unpurified Chinese hamster ovary cell cultures continuously. The system performed direct monitoring of IgG titers with nanomolar resolution and showed a good correlation with the biolayer interferometry assays. Furthermore, by variation of the concentration of the indicator (TNF-α), the dynamic range of the system can be tuned and further expanded.

4.
Lab Chip ; 23(19): 4313-4323, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702123

RESUMEN

The growing interest in regenerative medicine has opened new avenues for novel cell therapies using stem cells. Bone marrow aspirate (BMA) is an important source of stromal mesenchymal stem cells (MSCs). Conventional MSC harvesting from BMA relies on archaic centrifugation methods, often leading to poor yield due to osmotic stress, high centrifugation force, convoluted workflow, and long experimental time (∼2-3 hours). To address these issues, we have developed a scalable microfluidic technology based on deterministic lateral displacement (DLD) for MSC isolation. This passive, label-free cell sorting method capitalizes on the morphological differences between MSCs and blood cells (platelets and RBCs) for effective separation using an inverted L-shaped pillar array. To improve throughput, we developed a novel multi-chip DLD system that can process 2.5 mL of raw BMA in 20 ± 5 minutes, achieving a 2-fold increase in MSC recovery compared to centrifugation methods. Taken together, we envision that the developed DLD platform will enable fast and efficient isolation of MSCs from BMA for effective downstream cell therapy in clinical settings.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Microfluídica , Células Madre , Plaquetas
5.
Lab Chip ; 23(20): 4422-4433, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37655439

RESUMEN

Microfabricated slanted nanofilter arrays are a promising technology for integrated biomolecule analysis systems such as online monitoring and point-of-care quality validation, due to their continuous-flow and one-step operation capability. However, an incomplete understanding of the system limits the performance and wider applications of slanted nanofilter arrays. In this paper, we present rigorous theoretical and experimental studies on macromolecule sieving in a slanted nanofilter array. From both stochastic and kinetic models, an explicit theoretical solution describing size-dependent molecule sieving was derived, which was validated using experimental sieving results obtained for various sieving conditions. Our results not only detail the relationship between sieving conditions and sieving efficiency but also demonstrate that sieving is affected by multiple hindrance effects (electrostatic hindrance), not steric hindrance alone. There is an optimal sieving condition for achieving the greatest separation efficiency for DNAs of a certain size range. Small DNA has great size selectivity in small nanofilters and in weak electric fields, whereas large DNA is present in large nanofilters and in strong electric fields. This study provides insights into designing a slanted nanofilter array for particular target applications and understanding the sieving principles in the nanofilter array.

6.
Lab Chip ; 23(9): 2356, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37021431

RESUMEN

Correction for 'Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics' by Hyungkook Jeon et al., Lab Chip, 2020, 20, 3612-3624, https://doi.org/10.1039/D0LC00675K.

7.
Stem Cells Transl Med ; 12(5): 266-280, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36988042

RESUMEN

Detection of cellular senescence is important quality analytics of cell therapy products, including mesenchymal stromal cells (MSCs). However, its detection is critically limited by the lack of specific markers and the destructive assays used to read out these markers. Here, we establish a rapid, live-cell assay for detecting senescent cells in heterogeneous mesenchymal stromal cell (MSC) cultures. We report that the T2 relaxation time measured by microscale Magnetic Resonance Relaxometry, which is related to intracellular iron accumulation, correlates strongly with senescence markers in MSC cultures under diverse conditions, including different passages and donors, size-sorted MSCs by inertial spiral microfluidic device, and drug-induced senescence. In addition, the live-cell and non-destructive method presented here has general applicability to other cells and tissues and can critically advance our understanding of cellular senescence.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Espectroscopía de Resonancia Magnética , Células Cultivadas
8.
Sci Rep ; 13(1): 516, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627315

RESUMEN

This in vitro study evaluated the effects of the infiltration of F- and Ca2+ ions into human enamel by electrokinetic flow (EKF) on the enamel microhardness and F- content. Sound human enamel ground sections of unerupted third molars were infiltrated with de-ionized water by EKF and with F- ion by EKF respectively. All samples were submitted to two successive transverse acid-etch biopsies (etching times of 30 s and 20 min) to quantify F- ion infiltrated deep into enamel. Remarkably, sound enamel showed a large increase in microhardness (MH) after infiltration of NaF (p < 0.00001) and CaCl2 (p = 0.013) by EKF. Additionally, NaF-EKF increased the remineralization in the lesion body of artificial enamel caries lesions compared to controls (p < 0.01). With the enamel biopsy technique, at both etching times, more F- ions were found in the EKF-treated group than the control group (p << 0.05), and more fluoride was extracted from deeper biopsies in the NaF-EKF group. In conclusion, our results show that EKF treatment is superior in transporting Ca2+ and F- ions into sound enamel when compared to molecular diffusion, enhancing both the mineralization of sound enamel and the remineralization of artificial enamel caries.


Asunto(s)
Cariostáticos , Caries Dental , Humanos , Cariostáticos/farmacología , Remineralización Dental/métodos , Fluoruros/farmacología , Proyectos de Investigación , Esmalte Dental , Fluoruro de Sodio
9.
Tissue Eng Part B Rev ; 29(3): 310-330, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36416231

RESUMEN

Articular cartilage is composed of superficial, medial, and deep zones, which endow the tissue with biphasic mechanical properties to withstand shearing force and compressional loading. The tissue has very limited self-healing capacity once it is damaged due to its avascular nature. To prevent the early onset of osteoarthritis, surgical intervention is often needed to repair the injured cartilage. Current noncell-based and cell-based treatments focus on the regeneration of homogeneous cartilage to achieve bulk compressional properties without recapitulating the zonal matrix and mechanical properties, and often oversight in aiding cartilage integration between host and repair cartilage. It is hypothesized that achieving zonal architecture in articular cartilage tissue repair could improve the structural and mechanical integrity and thus the life span of the regenerated tissue. Engineering stratified cartilage constructs using zonal chondrocytes have been hypothesized to improve the functionality and life span of the regenerated tissues. However, stratified articular cartilage repair has yet to be realized to date due to the lack of an efficient zonal chondrocyte isolation method and an expansion platform that would allow both cell propagation and phenotype maintenance. Various attempts and challenges in achieving stratified articular cartilage repair in a clinical setting are evaluated. In this review, different perspectives on achieving stratified articular cartilage repair using zonal chondrocytes are described. The effectiveness of different zonal chondrocyte isolation and zonal chondrocyte phenotype maintenance methodologies during expansion are compared, with the focus on recent advancements in zonal chondrocyte isolation and expansion that could present a possible strategy to overcome the limitation of applying zonal chondrocytes to facilitate zonal architecture development in articular cartilage regeneration. Impact Statement The zonal properties of articular cartilage contribute to the biphasic mechanical properties of the tissues. Recapitulation of the zonal architecture in regenerated articular cartilage has been hypothesized to improve the mechanical integrity and life span of the regenerated tissue. This review provides a comprehensive discussion on the current state of research relevant to achieving stratified articular cartilage repair using zonal chondrocytes from different perspectives. This review further elaborates on a zonal chondrocyte production pipeline that can potentially overcome the current clinical challenges and future work needed to realize stratified zonal chondrocyte implantation in a clinical setting.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos , Ingeniería de Tejidos/métodos , Regeneración
10.
Anal Chim Acta ; 1221: 340151, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35934381

RESUMEN

The drug-induced diverse response among patients is a severe problem for improving hemorheological character. However, there is no validated method for personalized therapy to the best of our knowledge. Here, we apply a gravity-driven deformability cytometry platform (GD-DCP) to profile the drug response of the red cell deformability (RCD) at the single-cell level using pentoxifylline (PTX) as a model drug, the effect of different concentrations of PTX (0, 2, 20, 200 µg mL-1, the clinical dosage of PTX is 20 µg mL-1) on RCD in patients with cardiovascular disease was explored. Based on the GD-DCP, about 38 and 56% of the acute phase of acute myocardial infarction (AMI) patients in the acute phase and coronary heart disease (CHD) patients respond positively to PTX, respectively, indicating that PTX has a strong patient dependency on RCD. Moreover, RCD is observed to be significantly inversely correlated with the activation of membrane protein kinase C (PKC) as well as the concentration of Ca2+ (both P < 0.001). The results of animal experiments show that the protective effects of PTX on myocardial ischemia rats have substantial individual variation, too. It is noted that the effect of PTX is highly consistent between RCD in vitro and in vivo outcomes (blood viscosity, myocardial injury, and electrocardiogram (ECG)) in the same rat. All these new findings suggest that the GD-DCP is a promising method that uses deformability in vitro as one of the important criteria in personalized medicine, and our study provides unique insight into the individual-dependent mechanisms of PTX for improving RCD.


Asunto(s)
Microfluídica , Pentoxifilina , Animales , Viscosidad Sanguínea , Deformación Eritrocítica/fisiología , Eritrocitos/metabolismo , Citometría de Flujo , Pentoxifilina/metabolismo , Pentoxifilina/farmacología , Ratas
11.
Proc Natl Acad Sci U S A ; 119(23): e2117764119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653567

RESUMEN

Electrical nerve stimulation serves an expanding list of clinical applications, but it faces persistent challenges in selectively activating bundled nerve fibers. In this study, we investigated electrochemical modulation with an ion-selective membrane (ISM) and whether it, used together with electrical stimulation, may provide an approach for selective control of peripheral nerves. Guided by theoretical transport modeling and direct concentration measurements, we developed an implantable, multimodal ISM cuff capable of simultaneous electrical stimulation and focused Ca2+ depletion. Acutely implanting it on the sciatic nerve of a rat in vivo, we demonstrated that Ca2+ depletion could increase the sensitivity of the nerve to electrical stimulation. Furthermore, we found evidence that the effect of ion modulation would selectively influence functional components of the nerve, allowing selective activation by electrical current. Our results raise possibilities for improving functional selectivity of new and existing bioelectronic therapies, such as vagus nerve stimulation.


Asunto(s)
Terapia por Estimulación Eléctrica , Tejido Nervioso , Nervio Ciático , Animales , Estimulación Eléctrica , Fibras Nerviosas , Ratas , Nervio Ciático/fisiología
12.
Cartilage ; 13(2): 19476035221093063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35446156

RESUMEN

OBJECTIVE: The zonal properties of articular cartilage critically contribute to the mechanical support and lubrication of the tissue. Current treatments for articular cartilage have yet to regenerate this zonal architecture, thus compromising the functional efficacy of the repaired tissue and leading to tissue degeneration in the long term. In this study, the efficacy of zonal cartilage regeneration through bilayered implantation of expanded autologous zonal chondrocytes was investigated in a porcine chondral defect model. DESIGN: Autologous chondrocytes extracted from articular cartilage in the non-weight bearing trochlea region of the knee were subjected to an expansion-sorting strategy, integrating dynamic microcarrier (dMC) culture, and spiral microchannel size-based zonal chondrocyte separation. Zonal chondrocytes were then implanted as bilayered fibrin hydrogel construct in a porcine knee chondral defect model. Repair efficacy was compared with implantation with cell-free fibrin hydrogel and full thickness (FT) cartilage-derived heterogenous chondrocytes. Cartilage repair was evaluated 6 months after implantation. RESULTS: Sufficient numbers of zonal chondrocytes for implantation were generated from the non-weight bearing cartilage. Six-month repair outcomes showed that bilayered implantation of dMC-expanded zonal chondrocytes resulted in substantial recapitulation of zonal architecture, including chondrocyte arrangement, specific Proteoglycan 4 distribution, and collagen alignment, that was accompanied by healthier underlying subchondral bone. CONCLUSION: These results demonstrate that with appropriate expansion and isolation of zonal chondrocytes, the strategy of stratified zonal chondrocyte implantation represents a significant advancement to Autologous Chondrocyte Implantation-based cartilage regeneration, with the potential to improve the long-term integrity of the regenerated tissues.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Animales , Cartílago Articular/cirugía , Condrocitos , Fibrina , Hidrogeles , Porcinos
13.
Anal Chem ; 94(16): 6394-6402, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35416029

RESUMEN

A fully automated and label-free sample-to-answer white blood cell (WBC) cytometry platform for rapid immune state monitoring is demonstrated. The platform integrates (1) a WBC separation process using the multidimensional double spiral (MDDS) device and (2) an imaging process where images of the separated WBCs are captured and analyzed. Using the deep-learning-based image processing technique, we analyzed the captured bright-field images to classify the WBCs into their subtypes. Furthermore, in addition to cell classification, we can detect activation-induced morphological changes in WBCs for functional immune assessment, which could allow the early detection of various diseases. The integrated platform operates in a rapid (<30 min), fully automated, and label-free manner. The platform could provide a promising solution to future point-of-care WBC diagnostics applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Leucocitos
14.
Environ Sci Technol ; 56(10): 6733-6743, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35420021

RESUMEN

A portable seawater desalination system would be highly desirable to solve water challenges in rural areas and disaster situations. While many reverse osmosis-based portable desalination systems are already available commercially, they are not adequate for providing reliable drinking water in remote locations due to the requirement of high-pressure pumping and repeated maintenance. We demonstrate a field-deployable desalination system with multistage electromembrane processes, composed of two-stage ion concentration polarization and one-stage electrodialysis, to convert brackish water and seawater to drinkable water. A data-driven predictive model is used to optimize the multistage configuration, and the model predictions show good agreement with the experimental results. The portable system desalinates brackish water and seawater (2.5-45 g/L) into drinkable water (defined by WHO guideline), with the energy consumptions of 0.4-4 (brackish water) and 15.6-26.6 W h/L (seawater), respectively. In addition, the process can also reduce suspended solids by at least a factor of 10 from the source water, resulting in crystal clear water (<1 NTU) even from the source water with turbidity higher than 30 NTU (i.e., cloudy seawater by the tide). We built a fully integrated prototype (controller, pumps, and battery) packaged into a portable unit (42 × 33.5 × 19 cm3, 9.25 kg, and 0.33 L/h production rate) controlled by a smartphone, tested for battery-powered field operation. The demonstrated portable desalination system is unprecedented in size, efficiency, and operational flexibility. Therefore, it could address unique water challenges in remote, resource-limited regions of the world.


Asunto(s)
Agua Potable , Purificación del Agua , Filtración , Ósmosis , Agua de Mar , Purificación del Agua/métodos
15.
Sci Rep ; 12(1): 4212, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273303

RESUMEN

Here, we propose a fully-automated platform using a spiral inertial microfluidic device for standardized semen preparation that can process patient-derived semen samples with diverse fluidic conditions without any pre-washing steps. We utilized the multi-dimensional double spiral (MDDS) device to effectively isolate sperm cells from other non-sperm seminal cells (e.g., leukocytes) in the semen sample. The recirculation platform was employed to minimize sample dependency and achieve highly purified and concentrated (up to tenfold) sperm cells in a rapid and fully-automated manner (~ 10 min processing time for 50 mL of diluted semen sample). The clinical (raw) semen samples obtained from healthy donors were directly used without any pre-washing step to evaluate the developed separation platform, which showed excellent performance with ~ 80% of sperm cell recovery, and > 99.95% and > 98% removal of 10-µm beads (a surrogate for leukocytes) from low-viscosity and high-viscosity semen samples, respectively. We expect that the novel platform will be an efficient and automated tool to achieve purified sperm cells directly from raw semen samples for assisted reproductive technologies (ARTs) as an alternative to density centrifugation or swim-up methods, which often suffer from the low recovery of sperm cells and labor-intensive steps.


Asunto(s)
Microfluídica , Análisis de Semen , Humanos , Dispositivos Laboratorio en un Chip , Masculino , Semen , Análisis de Semen/métodos , Motilidad Espermática , Espermatozoides
16.
Lab Chip ; 22(2): 272-285, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34931631

RESUMEN

Inertial microfluidics has enabled many impactful high throughput applications. However, devices fabricated in soft elastomer (i.e., polydimethylsiloxane (PDMS)) suffer reliability issues due to significant deformation generated by the high pressure and flow rates in inertial microfluidics. In this paper, we demonstrated deformation-free and mass-producible plastic spiral inertial microfluidic devices for high-throughput cell separation applications. The design of deformable PDMS spiral devices was translated to their plastic version by compensating for the channel deformation in the PDMS devices, analyzed by numerical simulation and confocal imaging methods. The developed plastic spiral devices showed similar performance to their original PDMS devices for blood separation and Chinese hamster ovary (CHO) cell retention. Furthermore, using a multiplexed plastic spiral unit containing 100 spirals, we successfully demonstrated ultra-high-throughput cell clarification (at a processing rate of 1 L min-1) with a high cell-clarification efficiency of ∼99% (at the cell density changing from ∼2 to ∼10 × 106 cells mL-1). Benefitting from the continuous and clogging-free separation with an industry-level throughput, the cell clarification device could be a critical breakthrough for the production of therapeutic biologics such as antibodies or vaccines, impacting biomanufacturing in general.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Animales , Células CHO , Cricetinae , Cricetulus , Plásticos , Reproducibilidad de los Resultados
18.
STAR Protoc ; 2(3): 100797, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34527954

RESUMEN

Comet assay is a standard approach for studying DNA damage in malaria, but high-throughput options are not available. The CometChip was previously developed using mammalian cells as a high-throughput version of the comet assay. It is based on the same principle as the comet assay but provides greater efficacy, automated data processing, and improved consistency between experiments. In this protocol, we present MalariaCometChip to quantitatively assess drug-induced DNA damage in Plasmodium falciparum. For complete details on the use and execution of this protocol, please refer to Xiong et al. (2020).


Asunto(s)
Ensayo Cometa/métodos , Daño del ADN/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Plasmodium falciparum/genética , Células Cultivadas , Daño del ADN/efectos de los fármacos , ADN Protozoario/análisis , ADN Protozoario/efectos de los fármacos , ADN Protozoario/genética , Electroforesis , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Plasmodium falciparum/citología , Plasmodium falciparum/efectos de los fármacos
19.
Small ; 17(39): e2101880, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34396694

RESUMEN

Separation of high-density suspension particles at high throughput is crucial for many chemical, biomedical, and environmental applications. In this study, elasto-inertial microfluidics is used to manipulate ultra-high-density cells to achieve stable equilibrium positions in microchannels, aided by the inherent viscoelasticity of high-density cell suspension. It is demonstrated that ultra-high-density Chinese hamster ovary cell suspension (>26 packed cell volume% (PCV%), >95 million cells mL-1 ) can be focused at distinct lateral equilibrium positions under high-flow-rate conditions (up to 10 mL min-1 ). The effect of flow rates, channel dimensions, and cell densities on this unique focusing behavior is studied. Cell clarification is further demonstrated using this phenomenon, from 29.7 PCV% (108.1 million cells mL-1 ) to 8.3 PCV% (33.2 million cells mL-1 ) with overall 72.1% reduction efficiency and 10 mL min-1 processing rate. This work explores an extreme case of elasto-inertial particle focusing where ultra-high-density culture suspension is efficiently manipulated at high throughput. This result opens up new opportunities for practical applications of high-particle-density suspension manipulation.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Animales , Células CHO , Separación Celular , Cricetinae , Cricetulus , Tamaño de la Partícula
20.
ACS Sens ; 6(7): 2747-2756, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34185513

RESUMEN

We report a fully automated, sample-to-answer, and label-free leukocyte activation analysis platform for monitoring immune responses in sepsis, by integrating the multidimensional double spiral (MDDS) and isodielectric separation (IDS) subplatforms. The integrated platform can provide rapid and fully automated identification of clinically diagnosed sepsis patients from only 50 µL of peripheral blood volume within 25 min. Many critical innovations were implemented in direct interconnection between the two subplatforms, such as intermediate sample storage and sample transfer, addressing flow rate mismatch (from mL/min to µL/min), and integration of a ridge array for upstream cell focusing in the IDS subplatform. The ridge array in the IDS subplatform can prevent the distortion of electrical profiling due to the residual red blood cells even after the MDDS process. We showed that the integrated platform can separate leukocytes (up to >99.9% red blood cell removal) in the MDDS subplatform and automatically transfer them to the downstream ridge-integrated IDS subplatform for their activation analysis without any apparent ex vivo cell activation and any human intervention. We also demonstrated that the integrated platform can identify differences between leukocytes from human sepsis and healthy subjects significantly (p = 0.0024, 95% confidence interval) by looking into differences in the intrinsic electrical properties of leukocytes. The integrated platform could enable monitoring of host leukocyte function daily or even hourly as a bedside assessment tool, which is currently a critical yet unmet need for managing many critical care patients.


Asunto(s)
Leucocitos , Sepsis , Electricidad , Humanos , Sepsis/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...