Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 14: 1240992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546533

RESUMEN

Introduction: Response to post-stroke aphasia language rehabilitation is difficult to anticipate, mainly because few predictors can help identify optimal, individualized treatment options. Imaging techniques, such as Voxel-based Lesion Symptom Mapping have been useful in linking specific brain areas to language behavior; however, further development is required to optimize the use of structural and physiological information in guiding individualized treatment for persons with aphasia (PWA). In this study, we will determine if cerebral blood flow (CBF) mapped in patients with chronic strokes can be further used to understand stroke-related factors and behavior. Methods: We collected perfusion MRI data using pseudo-Continuous Arterial Spin Labeling (pCASL) using a single post-labeling delay of 2,200 ms in 14 chronic PWA, along with high-resolution structural MRI to compute maps of tissue damage using Tissue Integrity Gradation via T2w T1w Ratio (TIGR). To quantify the CBF in chronic stroke lesions, we tested at what point spatial smoothing should be applied in the ASL analysis pipeline. We then related CBF to tissue damage, time since stroke, age, sex, and their respective cross-terms to further understand the variability in lesion CBF. Finally, we assessed the feasibility of computing multivariate brain-behavior maps using CBF and compared them to brain-behavior maps extracted with TIGR MRI. Results: We found that the CBF in chronic stroke lesions is significantly reduced compared to its homologue grey and white matter regions. However, a reliable CBF signal (although smaller than expected) was detected to reveal a negative relationship between CBF and increasing tissue damage. Further, the relationship between the lesion CBF and age, sex, time since stroke, and tissue damage and cross-terms suggested an aging-by-disease interaction. This relationship was strongest when smoothing was applied in the template space. Finally, we show that whole-brain CBF relates to domain-general visuospatial functioning in PWA. The CBF-based brain-behavior maps provide unique and complementary information to structural (lesion-based) brain-behavior maps. Discussion: Therefore, CBF can be detected in chronic stroke lesions using a standard pCASL MRI acquisition and is informative at the whole-brain level in identifying stroke rehabilitation targets in PWAs due to its relationship with demographic factors, stroke-related factors, and behavior.

2.
Behav Brain Res ; 452: 114575, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37423319

RESUMEN

With the diversity in aphasia coupled with diminished gains at the chronic phase, it is imperative to deliver effective rehabilitation plans. Treatment outcomes have therefore been predicted using lesion-to-symptom mapping, but this method lacks holistic functional information about the language-network. This study, therefore, aims to develop whole-brain task-fMRI multivariate analysis to neurobiologically inspect lesion impacts on the language-network and predict behavioral outcomes in persons with aphasia (PWA) undergoing language therapy. In 14 chronic PWA, semantic fluency task-fMRI and behavioral measures were collected to develop prediction methodologies for post-treatment outcomes. Then, a recently developed imaging-based multivariate method to predict behavior (i.e., LESYMAP) was optimized to intake whole-brain task-fMRI data, and systematically tested for reliability with mass univariate methods. We also accounted for lesion size in both methods. Results showed that both mass univariate and multivariate methods identified unique biomarkers for semantic fluency improvements from baseline to 2-weeks post-treatment. Additionally, both methods demonstrated reliable spatial overlap in task-specific areas including the right middle frontal gyrus when identifying biomarkers of language discourse. Thus whole-brain task-fMRI multivariate analysis has the potential to identify functionally meaningful prognostic biomarkers even for relatively small sample sizes. In sum, our task-fMRI based multivariate approach holistically estimates post-treatment response for both word and sentence production and may serve as a complementary tool to mass univariate analysis in developing brain-behavior relationships for improved personalization of aphasia rehabilitation regimens.


Asunto(s)
Afasia , Accidente Cerebrovascular , Humanos , Imagen por Resonancia Magnética/métodos , Pronóstico , Reproducibilidad de los Resultados , Afasia/diagnóstico por imagen , Afasia/terapia , Encéfalo , Mapeo Encefálico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA