Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 453(2): 209-18, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23631812

RESUMEN

The MondoA-Mlx transcription complex plays a pivotal role in glucose homoeostasis by activating target gene expression in response to G6P (glucose 6-phosphate), the first reaction intermediate in glycolysis. TXNIP (thioredoxin-interacting protein) is a direct and glucose-responsive target of MondoA that triggers a negative-feedback loop by restricting glucose uptake when G6P levels increase. We show in the present study that TXNIP expression is also activated by AICAR (5-amino-4-imidazolecarboxamide ribofuranoside) and adenosine. Using pharmacological inhibitors and genetic knockdowns of purine metabolic enzymes, we establish that TXNIP induction by AICAR and adenosine requires their cellular uptake and metabolism to adenine nucleotides. AICAR induction of TXNIP depended on MondoA, but was independent of AMPK (AMP-activated protein kinase) activation and calcium. The findings of the present study have two important implications. First, in addition to activating AMPK, AICAR may have AMPK-independent effects on gene expression by regulating MondoA-Mlx activity following its flux into the adenine nucleotide pool. Secondly, MondoA-Mlx complexes sense elevated levels of G6P and adenine nucleotides to trigger a TXNIP-dependent feedback inhibition of glycolysis. We propose that this mechanism serves as a checkpoint to restore metabolic homoeostasis.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Tiorredoxinas/metabolismo , Transcripción Genética , Animales , Proteínas Portadoras/biosíntesis , Glucólisis , Ratones , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Tiorredoxinas/biosíntesis
2.
Mol Cell Biol ; 30(12): 2887-95, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20385767

RESUMEN

Maintenance of energy homeostasis is a fundamental requirement for organismal fitness: defective glucose homeostasis underlies numerous metabolic diseases and cancer. At the cellular level, the ability to sense and adapt to changes in intracellular glucose levels is an essential component of this strategy. The basic helix-loop-helix-leucine zipper (bHLHZip) transcription factor complex MondoA-Mlx plays a central role in the transcriptional response to intracellular glucose concentration. MondoA-Mlx complexes accumulate in the nucleus in response to high intracellular glucose concentrations and are required for 75% of glucose-induced transcription. We show here that, rather than simply controlling nuclear accumulation, glucose is required at two additional steps to stimulate the transcription activation function of MondoA-Mlx complexes. Following nuclear accumulation, glucose is required for MondoA-Mlx occupancy at target promoters. Next, glucose stimulates the recruitment of a histone H3 acetyltransferase to promoter-bound MondoA-Mlx to trigger activation of gene expression. Our experiments establish the mechanistic circuitry by which cells sense and respond transcriptionally to various intracellular glucose levels.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Glucosa/farmacología , Regiones Promotoras Genéticas , Multimerización de Proteína/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Proteínas Portadoras/metabolismo , Núcleo Celular/efectos de los fármacos , Secuencia Conservada , Glucosa/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Tiorredoxinas/metabolismo , Activación Transcripcional/efectos de los fármacos
3.
PLoS One ; 3(7): e2677, 2008 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-18628952

RESUMEN

While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.


Asunto(s)
Proteínas/química , ARN/química , Citosol/metabolismo , ADN/química , Elementos de Facilitación Genéticos , Humanos , Modelos Genéticos , Chaperonas Moleculares/química , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Solubilidad
4.
Biochem Biophys Res Commun ; 373(1): 74-9, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18555007

RESUMEN

Hydrophobic interactions between molecular chaperones and their nonnative substrates have been believed to be mainly responsible for both substrate recognition and stabilization against aggregation. However, the hydrophobic contact area between DnaK and its substrate proteins is very limited and other factors of DnaK for the substrate stabilization could not be excluded. Here, we covalently fused DnaK to the N-termini of aggregation-prone proteins in vivo. In the context of a fusion protein, DnaK has the ability to efficiently solubilize its linked proteins. The point mutation of the residue of DnaK critical for the substrate recognition and the deletion of the C-terminal substrate-binding domain did not have significant effect on the solubilizing ability of DnaK. The results imply that other factors of DnaK, distinct from the hydrophobic shielding of folding intermediates, also contributes to stabilization of its noncovalently bound substrates against aggregation. Elucidation of the nature of these factors would further enhance our understanding of the substrate stabilization of DnaK for expedited protein folding.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación Puntual , Estructura Terciaria de Proteína/genética , Solubilidad
5.
Protein Sci ; 16(4): 635-43, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17384228

RESUMEN

The fusion of soluble partner to the N terminus of aggregation-prone polypeptide has been popularly used to overcome the formation of inclusion bodies in the E. coli cytosol. The chaperone-like functions of the upstream fusion partner in the artificial multidomain proteins could occur in de novo folding of native multidomain proteins. Here, we show that the N-terminal domains of three E. coli multidomain proteins such as lysyl-tRNA synthetase, threonyl-tRNA synthetase, and aconitase are potent solubility enhancers for various C-terminal heterologous proteins. The results suggest that the N-terminal domains could act as solubility enhancers for the folding of their authentic C-terminal domains in vivo. Tandem repeat of N-terminal domain or insertion of aspartic residues at the C terminus of the N-terminal domain also increased the solubility of fusion proteins, suggesting that the solubilizing ability correlates with the size and charge of N-terminal domains. The solubilizing ability of N-terminal domains would contribute to the autonomous folding of multidomain proteins in vivo, and based on these results, we propose a model of how N-terminal domains solubilize their downstream domains.


Asunto(s)
Proteínas de Escherichia coli/química , Pliegue de Proteína , Aconitato Hidratasa/química , Western Blotting , Electroforesis en Gel de Poliacrilamida , Lisina-ARNt Ligasa/química , Modelos Moleculares , Solubilidad , Secuencias Repetidas en Tándem , Treonina-ARNt Ligasa/química
6.
Biochem Biophys Res Commun ; 337(2): 557-62, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16212939

RESUMEN

hIL-1beta-derived polypeptide, when fused to the N-terminal end of target proteins, exerts a potent secretion enhancer function in Saccharomyces cerevisiae. We investigated the effect of N-glycosylation of the secretion enhancer peptide on the secretion of target proteins. The N-terminal 24 amino acids (Ser5-Ala28) of human interleukin 1beta (hIL-1beta) and interleukin 1 receptor antagonist (IL-1ra) were used as secretion enhancer for synthesizing recombinant human granulocyte-colony stimulating factor (rhG-CSF) from S. cerevisiae. The mutation of potential N-glycosylation site, by substituting Gln for either Asn7 of N-terminal 24 amino acids of hIL-1beta (Asn7Gln) or Asn84 of IL-1ra (Asn84Gln), resulted in a dramatic reduction of rhG-CSF secretion efficiency. In contrast, the mutant containing an additional N-glycosylation site on the N-terminal 24 amino acids of hIL-1beta (Gln15Asn) secreted twice as much rhG-CSF into culture media as wild type hIL-1beta. These results show that N-glycosylation of the secretion enhancer peptide plays an important role in increasing the secretion efficiency of the downstream target proteins. The results also suggest that judicious choice of enhancer peptide and the control of its glycosylation could be of general utility for secretory production of heterologous proteins from S. cerevisiae.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/metabolismo , Péptidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación hacia Abajo , Glicosilación , Factor Estimulante de Colonias de Granulocitos/genética , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Mutación , Péptidos/química , Péptidos/genética , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...