Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cortex ; 172: 1-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154374

RESUMEN

Neuroimaging studies consistently show advanced brain age in schizophrenia, suggesting that brain structure is often 'older' than expected at a given chronological age. Whether advanced brain age is linked to genetic liability for schizophrenia remains unclear. In this pre-registered secondary data analysis, we utilised a recall-by-genotype approach applied to a population-based subsample from the Avon Longitudinal Study of Parents and Children to assess brain age differences between young adults aged 21-24 years with relatively high (n = 96) and low (n = 93) polygenic risk for schizophrenia (SCZ-PRS). A global index of brain age (or brain-predicted age) was estimated using a publicly available machine learning model previously trained on a combination of region-wise gray-matter measures, including cortical thickness, surface area and subcortical volumes derived from T1-weighted magnetic resonance imaging (MRI) scans. We found no difference in mean brain-PAD (the difference between brain-predicted age and chronological age) between the high- and low-SCZ-PRS groups, controlling for the effects of sex and age at time of scanning (b = -.21; 95% CI -2.00, 1.58; p = .82; Cohen's d = -.034; partial R2 = .00029). These findings do not support an association between SCZ-PRS and brain-PAD based on global age-related structural brain patterns, suggesting that brain age may not be a vulnerability marker of common genetic risk for SCZ. Future studies with larger samples and multimodal brain age measures could further investigate global or localised effects of SCZ-PRS.


Asunto(s)
Esquizofrenia , Adulto Joven , Niño , Humanos , Adulto , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Esquizofrenia/patología , Estudios Longitudinales , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Genotipo , Predisposición Genética a la Enfermedad/genética
2.
J Affect Disord ; 346: 28-29, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37940051
4.
Neurology ; 100(20): e2103-e2113, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37015818

RESUMEN

BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (ß = 0.21; 95% CI 0.04-0.38, p = 0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (ß = -0.28; 95% CI -0.41 to -0.15, p < 0.001) and across multiple domains of function (ß = -0.14; 95% CI -0.22 to -0.06, p < 0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI 3%-58%, p = 0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (odds ratio 1.04, 95% CI 1.01-1.08, p = 0.004). DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets.


Asunto(s)
Accidente Cerebrovascular , Humanos , Anciano , Estudios Transversales , Accidente Cerebrovascular/complicaciones , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen
5.
J Affect Disord ; 330: 1-6, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36858270

RESUMEN

BACKGROUND: Severe depression is associated with accelerated brain aging. BrainAge gap, the difference between predicted and observed BrainAge, was investigated in patients with late-life depression (LLD). We aimed to examine BrainAge gap in LLD and its associations with clinical characteristics indexing LLD chronicity, current severity, prior to electroconvulsive therapy (ECT) and ECT outcome. METHODS: Data was analyzed from the Mood Disorders in Elderly treated with Electroconvulsive Therapy (MODECT) study. A previously established BrainAge algorithm (BrainAge R by James Cole, (https://github.com/james-cole/brainageR)) was applied to pre-ECT T1-weighted structural MRI-scans of 42 patients who underwent ECT. RESULTS: A BrainAge gap of 1.8 years (SD = 5.5) was observed, Cohen's d = 0.3. No significant associations between BrainAge gap, number of previous episodes, current episode duration, age of onset, depression severity, psychotic symptoms or ECT outcome were observed. LIMITATIONS: Limited sample size. CONCLUSIONS: Our initial findings suggest an older BrainAge than chronological age in patients with severe LLD referred for ECT, however with high degree of variability and direction of the gap. No associations were found with clinical measures. Larger samples are needed to better understand brain aging and to evaluate the usability of BrainAge gap as potential biomarker of prognosis an treatment-response in LLD. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02667353.


Asunto(s)
Trastorno Depresivo , Terapia Electroconvulsiva , Anciano , Humanos , Encéfalo , Depresión/terapia , Trastorno Depresivo/terapia , Pronóstico
6.
J Affect Disord ; 329: 19-29, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828150

RESUMEN

BACKGROUND: Antidepressant medication and running therapy are both effective treatments for patients with depressive and anxiety disorders. However, they may work through different pathophysiological mechanisms and could differ in their impact on physical health. This study examined effects of antidepressants versus running therapy on both mental and physical health. METHODS: According to a partially randomized patient preference design, 141 patients with depression and/or anxiety disorder were randomized or offered preferred 16-week treatment: antidepressant medication (escitalopram or sertraline) or group-based running therapy ≥2 per week. Baseline (T0) and post-treatment assessment at week 16 (T16) included mental (diagnosis status and symptom severity) and physical health indicators (metabolic and immune indicators, heart rate (variability), weight, lung function, hand grip strength, fitness). RESULTS: Of the 141 participants (mean age 38.2 years; 58.2 % female), 45 participants received antidepressant medication and 96 underwent running therapy. Intention-to-treat analyses showed that remission rates at T16 were comparable (antidepressants: 44.8 %; running: 43.3 %; p = .881). However, the groups differed significantly on various changes in physical health: weight (d = 0.57; p = .001), waist circumference (d = 0.44; p = .011), systolic (d = 0.45; p = .011) and diastolic (d = 0.53; p = .002) blood pressure, heart rate (d = 0.36; p = .033) and heart rate variability (d = 0.48; p = .006). LIMITATIONS: A minority of the participants was willing to be randomized; the running therapy was larger due to greater preference for this intervention. CONCLUSIONS: While the interventions had comparable effects on mental health, running therapy outperformed antidepressants on physical health, due to both larger improvements in the running therapy group as well as larger deterioration in the antidepressant group. TRIAL REGISTRATION: Trialregister.nl Number of identification: NTR3460.


Asunto(s)
Depresión , Fuerza de la Mano , Humanos , Femenino , Adulto , Masculino , Antidepresivos/uso terapéutico , Sertralina/uso terapéutico , Trastornos de Ansiedad/tratamiento farmacológico
7.
Neuroimage Clin ; 37: 103301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36586360

RESUMEN

BACKGROUND: Individual variation in brain aging trajectories is linked with several physical and mental health outcomes. Greater stress levels, worry, and rumination correspond with advanced brain age, while other individual characteristics, like mindfulness, may be protective of brain health. Multiple lines of evidence point to advanced brain aging in schizophrenia (i.e., neural age estimate > chronological age). Whether psychological dimensions such as mindfulness, rumination, and perceived stress contribute to brain aging in schizophrenia is unknown. METHODS: We estimated brain age from high-resolution anatomical scans in 54 healthy controls (HC) and 52 individuals with schizophrenia (SZ) and computed the brain predicted age difference (BrainAGE-diff), i.e., the delta between estimated brain age and chronological age. Emotional well-being summary scores were empirically derived to reflect individual differences in trait mindfulness, rumination, and perceived stress. Core analyses evaluated relationships between BrainAGE-diff and emotional well-being, testing for slopes differences across groups. RESULTS: HC showed higher emotional well-being (greater mindfulness and less rumination/stress), relative to SZ. We observed a significant group difference in the relationship between BrainAge-diff and emotional well-being, explained by BrainAGE-diff negatively correlating with emotional well-being scores in SZ, and not in HC. That is, SZ with younger appearing brains (predicted age < chronological age) had emotional summary scores that were more like HC, a relationship that endured after accounting for several demographic and clinical variables. CONCLUSIONS: These data reveal clinically relevant aspects of brain age heterogeneity among SZ and point to case-control differences in the relationship between advanced brain aging and emotional well-being.


Asunto(s)
Atención Plena , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Envejecimiento , Emociones
8.
Mol Psychiatry ; 28(3): 1201-1209, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36494461

RESUMEN

Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions.


Asunto(s)
Esquizofrenia , Adulto , Humanos , Masculino , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Femenino , Estudios Prospectivos , Imagen por Resonancia Magnética , Encéfalo/patología , Envejecimiento
9.
Elife ; 112022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476569

RESUMEN

The eLife Early-Career Advisory Group discusses eLife's new peer review and publishing model, and how the whole process of scientific communication could be improved for the benefit of early-career researchers and the entire scientific community.


Asunto(s)
Revisión por Pares , Comunicación
10.
Neuroimage Clin ; 36: 103180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36088843

RESUMEN

OBJECTIVE: Major depressive disorder has been associated with lower prefrontal thickness and hippocampal volume, but it is unknown whether this association also holds for depressive symptoms in the general population. We investigated associations of depressive symptoms and depression status with brain structures across population-based and patient-control cohorts, and explored whether these associations are similar over the lifespan and across sexes. METHODS: We included 3,447 participants aged 18-89 years from six population-based and two clinical patient-control cohorts of the European Lifebrain consortium. Cross-sectional meta-analyses using individual person data were performed for associations of depressive symptoms and depression status with FreeSurfer-derived thickness of bilateral rostral anterior cingulate cortex (rACC) and medial orbitofrontal cortex (mOFC), and hippocampal and total grey matter volume (GMV), separately for population-based and clinical cohorts. RESULTS: Across patient-control cohorts, depressive symptoms and presence of mild-to-severe depression were associated with lower mOFC thickness (rsymptoms = -0.15/ rstatus = -0.22), rACC thickness (rsymptoms = -0.20/ rstatus = -0.25), hippocampal volume (rsymptoms = -0.13/ rstatus = 0.13) and total GMV (rsymptoms = -0.21/ rstatus = -0.25). Effect sizes were slightly larger for presence of moderate-to-severe depression. Associations were similar across age groups and sex. Across population-based cohorts, no associations between depression and brain structures were observed. CONCLUSIONS: Fitting with previous meta-analyses, depressive symptoms and depression status were associated with lower mOFC, rACC thickness, and hippocampal and total grey matter volume in clinical patient-control cohorts, although effect sizes were small. The absence of consistent associations in population-based cohorts with mostly mild depressive symptoms, suggests that significantly lower thickness and volume of the studied brain structures are only detectable in clinical populations with more severe depressive symptoms.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Adulto , Trastorno Depresivo Mayor/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Depresión/diagnóstico por imagen
11.
J Affect Disord ; 312: 268-274, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35760189

RESUMEN

BACKGROUND: Structural brain alterations are observed in major depressive disorder (MDD). However, MDD is a highly heterogeneous disorder and specific clinical or biological characteristics of depression might relate to specific structural brain alterations. Clinical symptom subtypes of depression, as well as immuno-metabolic dysregulation associated with subtypes of depression, have been associated with brain alterations. Therefore, we examined if specific clinical and biological characteristics of depression show different brain alterations compared to overall depression. METHOD: Individuals with and without depressive and/or anxiety disorders from the Netherlands Study of Depression and Anxiety (NESDA) (328 participants from three timepoints leading to 541 observations) and the Mood Treatment with Antidepressants or Running (MOTAR) study (123 baseline participants) were included. Symptom profiles (atypical energy-related profile, melancholic profile and depression severity) and biological indices (inflammatory, metabolic syndrome, and immuno-metabolic indices) were created. The associations of the clinical and biological profiles with depression-related structural brain measures (anterior cingulate cortex [ACC], orbitofrontal cortex, insula, and nucleus accumbens) were examined dimensionally in both studies and meta-analysed. RESULTS: Depression severity was negatively associated with rostral ACC thickness (B = -0.55, pFDR = 0.03), and melancholic symptoms were negatively associated with caudal ACC thickness (B = -0.42, pFDR = 0.03). The atypical energy-related symptom profile and immuno-metabolic indices did not show a consistent association with structural brain measures across studies. CONCLUSION: Overall depression- and melancholic symptom severity showed a dose-response relationship with reduced ACC thickness. No associations between immuno-metabolic dysregulation and structural brain alterations were found, suggesting that although both are associated with depression, distinct mechanisms may be involved.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos de Ansiedad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Depresión , Trastorno Depresivo Mayor/diagnóstico , Giro del Cíngulo/metabolismo , Humanos
12.
Nat Neurosci ; 25(4): 421-432, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35383335

RESUMEN

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Asunto(s)
Estudio de Asociación del Genoma Completo , Longevidad , Envejecimiento/genética , Encéfalo , Humanos , Longevidad/genética , Imagen por Resonancia Magnética
13.
Hum Brain Mapp ; 43(10): 3113-3129, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35312210

RESUMEN

Estimating age based on neuroimaging-derived data has become a popular approach to developing markers for brain integrity and health. While a variety of machine-learning algorithms can provide accurate predictions of age based on brain characteristics, there is significant variation in model accuracy reported across studies. We predicted age in two population-based datasets, and assessed the effects of age range, sample size and age-bias correction on the model performance metrics Pearson's correlation coefficient (r), the coefficient of determination (R2 ), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results showed that these metrics vary considerably depending on cohort age range; r and R2 values are lower when measured in samples with a narrower age range. RMSE and MAE are also lower in samples with a narrower age range due to smaller errors/brain age delta values when predictions are closer to the mean age of the group. Across subsets with different age ranges, performance metrics improve with increasing sample size. Performance metrics further vary depending on prediction variance as well as mean age difference between training and test sets, and age-bias corrected metrics indicate high accuracy-also for models showing poor initial performance. In conclusion, performance metrics used for evaluating age prediction models depend on cohort and study-specific data characteristics, and cannot be directly compared across different studies. Since age-bias corrected metrics generally indicate high accuracy, even for poorly performing models, inspection of uncorrected model results provides important information about underlying model attributes such as prediction variance.


Asunto(s)
Algoritmos , Aprendizaje Automático , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Humanos
14.
Hum Brain Mapp ; 43(1): 207-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368865

RESUMEN

Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013-12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi-)genetics. Finally, we highlight points where FreeSurfer-based hippocampal subfield studies may be optimized.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Estudios Multicéntricos como Asunto , Neuroimagen/métodos , Neuroimagen/normas , Control de Calidad
15.
Brain Behav ; 12(1): e2413, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907666

RESUMEN

BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. METHOD: Adult subjects (N = 2229; 56.2% male) aged 18-69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age - chronological age) controlling for chronological age, sex, and scan site. RESULTS: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. DISCUSSION: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan.


Asunto(s)
Trastornos por Estrés Postraumático , Adolescente , Adulto , Anciano , Envejecimiento , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Trastornos por Estrés Postraumático/diagnóstico por imagen , Adulto Joven
16.
Transl Psychiatry ; 11(1): 402, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290222

RESUMEN

Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18-57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen's d = 0.25, 95% CI -0.10-0.60) and anxiety patients (+2.91 years, Cohen's d = 0.27, 95% CI -0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (-2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Envejecimiento , Trastornos de Ansiedad , Encéfalo/diagnóstico por imagen , Depresión , Humanos , Países Bajos/epidemiología
17.
Mol Psychiatry ; 26(9): 5124-5139, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32424236

RESUMEN

Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted "brain age" and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen's d = 0.14, 95% CI: 0.08-0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates.


Asunto(s)
Trastorno Depresivo Mayor , Adolescente , Adulto , Anciano , Envejecimiento , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Transl Psychiatry ; 10(1): 172, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472038

RESUMEN

A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Difusión de la Información , Neuroimagen
19.
Transl Psychiatry ; 10(1): 100, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198361

RESUMEN

This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/genética , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Reproducibilidad de los Resultados
20.
Mol Psychiatry ; 25(6): 1344-1354, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-30242228

RESUMEN

We present the first large-scale methylome-wide association studies (MWAS) for major depressive disorder (MDD) to identify sites of potential importance for MDD etiology. Using a sequencing-based approach that provides near-complete coverage of all 28 million common CpGs in the human genome, we assay methylation in MDD cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from Brodmann Area 10, BA10). The MWAS for blood identified several loci with P ranging from 1.91 × 10-8 to 4.39 × 10-8 and a resampling approach showed that the cumulative association was significant (P = 4.03 × 10-10) with the signal coming from the top 25,000 MWAS markers. Furthermore, a permutation-based analysis showed significant overlap (P = 5.4 × 10-3) between the MWAS findings in blood and brain (BA10). This overlap was significantly enriched for a number of features including being in eQTLs in blood and the frontal cortex, CpG islands and shores, and exons. The overlapping sites were also enriched for active chromatin states in brain including genic enhancers and active transcription start sites. Furthermore, three loci located in GABBR2, RUFY3, and in an intergenic region on chromosome 2 replicated with the same direction of effect in the second brain tissue (BA25, N = 60) from the same individuals and in two independent brain collections (BA10, N = 81 and 64). GABBR2 inhibits neuronal activity through G protein-coupled second-messenger systems and RUFY3 is implicated in the establishment of neuronal polarity and axon elongation. In conclusion, we identified and replicated methylated loci associated with MDD that are involved in biological functions of likely importance to MDD etiology.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Trastorno Depresivo Mayor/sangre , Epigenoma , Cromosomas Humanos Par 2/genética , Islas de CpG/genética , Proteínas del Citoesqueleto/genética , Metilación de ADN/genética , ADN Intergénico/genética , Trastorno Depresivo Mayor/genética , Epigenoma/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Receptores de GABA-B/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...