Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1459427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253718

RESUMEN

The sex determination system of largemouth bass (Micropterus salmoides, LMB) is XX/XY; however, the underlying molecular mechanisms involved in early sex differentiation, gonadal development, and exogenous hormone-induced sex reversal remain unknown. In this study, LMB at 15 days post-hatching (dph) were fed diets containing 20 mg/kg of 17α-methyltestosterone (17α-MT) or 30 mg/kg of 17ß-estradiol (17ß-E2) for 60 days, respectively. Serum steroid levels, histological observations of the gonads, and identification of sex-specific markers were employed to screen the gonads of 60-day-old normal female fish (XX-F), normal male fish (XY-M), 17ß-E2 induced pseudo-female fish (XY-F), and 17α-MT-induced pseudo-male fish (XX-M) for transcriptome sequencing in order to uncover genes and pathway involved in the process of sexual reversal. The results from histology and serum sex steroid hormone analysis showed that both 17α-MT and 17ß-E2 were capable of inducing sex reversal of LMB at 15 dph. Transcriptome results revealed a total of 2,753 genes exhibiting differential expression, and the expression pattern of these genes in the gonads of XX-M or XY-F resembled that of normal females or males. The male sex-biased genes that are upregulated in XX-M and downregulated in XY-F are referred to as key genes for male reversal, while the female sex-biased genes that are upregulated in XY-F and downregulated in XX-M are referred to as key genes for female reversal. Finally, 12 differentially expressed genes (DEGs) related to male sex reversal were screened, including star2, cyp17a, cyp11b1, dmrt1, amh, sox9a, katnal1, spata4, spata6l, spata7, spata18 and foxl3. 2 DEGs (foxl2a and cyp19a1b) were found to be associated with female sex reversal. The changes in these genes collectively influence the direction of sex differentiation of LMB. Among them, star2, dmrt1 and cyp19a1b with significantly altered expression levels may play potentially crucial role in the process of gender reversal. The expression patterns of 21 randomly selected genes were verified using qRT-PCR which confirmed the reliability and accuracy of the RNA-seq results. These findings not only enhance our understanding of the molecular basis underlying sex reversal but also provide crucial data support for future breeding research on unisexual LMB.

2.
Fish Physiol Biochem ; 50(2): 575-588, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216846

RESUMEN

To investigate the regulatory role of the cyp19a1b aromatase gene in the sexual differentiation of largemouth bass (Micropterus salmoides, LMB), we obtained the full-length cDNA sequence of cyp19a1b using rapid amplification of cDNA ends technique. Tissue expression characteristics and feedback with 17-ß-estradiol (E2) were determined using quantitative real-time PCR (qRT-PCR), while gonad development was assessed through histological section observations. The cDNA sequence of LMB cyp19a1b was found to be1950 base pairs (bp) in length, including a 5' untranslated region of 145 bp, a 3' untranslated region of 278 bp, and an open reading frame encoding a protein consisting of 1527 bp that encoded 508 amino acids. The qRT-PCR results indicated that cyp19a1b abundantly expressed in the brain, followed by the gonads, and its expression in the ovaries was significantly higher than that observed in the testes (P < 0.05). After feeding fish with E2 for 30 days, the expression of cyp19a1b in the pseudo-female gonads (XY-F) was significantly higher than that in males (XY-M) (P < 0.05), whereas expression did not differ significantly between XX-F and XY-F fish (P > 0.05). Although the expression of cyp19a1b in XY-F and XX-F fish was not significantly different after 60 days (P>0.05), both exhibited significantly higher levels than that of XY-M fish (P<0.05). Histological sections analysis showed the presence of oogonia in both XY-F and XX-F fish at 30 days, while spermatogonia were observed in XY-M fish. At 60 days, primary oocytes were abundantly observed in both XY-F and XX-F fish, while a few spermatogonia were visible in XY-M fish. At 90 days, the histological sections' results showed that a large number of oocytes were visible in XY-F and XX-F fish. Additionally, the gonads of XY-M fish contained numerous spermatocytes. These results suggest that cyp19a1b plays a pivotal role in the development of ovaries and nervous system development in LMB.


Asunto(s)
Lubina , Masculino , Femenino , Animales , Lubina/genética , Lubina/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Ovario/metabolismo
3.
Front Genet ; 13: 936610, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105092

RESUMEN

Largemouth bass (Micropterus salmoides L.) is generally considered to comprise two subspecies, Florida bass (M. floridanus) and Northern Largemouth bass (M. salmoides), which have biological characteristic differences because of their geographical distribution. In this study, whole-genome re-sequencing was performed among 10 Florida and 10 Northern largemouth bass, respectively. In total, 999,793 SNPs and 227,797 InDels were finally identified, and 507,401 SNPs (50.75%) and 116,213 InDels (51.01%) were successfully mapped to annotated 18,629 genes and 14,060 genes, respectively. KEGG classification indicated that most of these genes were focused on the pathways including signal transduction, transport and catabolism, and endocrine system. Genetic diversity analysis indicated that Florida largemouth bass had higher genetic diversity than Northern largemouth bass, indicating that the germplasm quality of Northern largemouth bass had markedly reduced in China. To examine the accuracies of the identified markers, 23 SNPs and eight InDels (the insertions or deletions of more than 45 bp) were randomly selected and detected among Florida largemouth bass, Northern largemouth bass, and their F1 hybrids. The detection efficiencies of all the markers were higher than 95%; nineteen SNPs and three InDels could accurately distinguish the two subspecies and their F1 hybrids with 100% efficiencies. Moreover, the three InDel markers could clearly distinguish the two subspecies and their F1 hybrids with a PCR-based agarose gel electrophoresis. In conclusion, our study established a simple PCR-based method for the germplasm identification of largemouth bass, which will be useful in the germplasm protection, management, and hybridization breeding of largemouth bass.

4.
Fish Physiol Biochem ; 48(3): 805-815, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35416634

RESUMEN

In this study, an efficient estradiol-17ß (E2)-induced feminization method was established based on the timing of early gonadal differentiation in Largemouth bass (Micropterus salmoides). Histological section results showed that from 20 days post-hatch (dph) to 30 dph, the germ cells gradually differentiated into oogonium and spermatic deferent, respectively. Moreover, female-biased genes Foxl2 and Cyp19a1a were up-regulated to the first peak at 20 dph, while the male-biased genes Dmrt1 were up-regulated to the first peak at 30 dph. These results indicated that the timing of early gonadal differentiation in Largemouth bass was between 20 and 30 dph. Therefore, 15 dph Largemouth bass with a body length of 15.10 ± 0.09 mm were chosen, and four E2-treated diets were set as 0 (E0, control), 50 mg/kg E2 (E50), 100 mg/kg E2 (E100), and 200 mg/kg E2 (E200). After feeding with E2-treated diets for 60 days, female ratios were 55%, 100%, 100%, and 100% in E0, E50, E100, and E200 groups, respectively. No intersex fish were observed in all the groups. However, 30% of females in the E200 group possessed thinner ovaries, with smaller ovary cavity structures and a decreased number of primary oocyte cells than those in other groups. Besides, the Largemouth bass in the E0 group grew more than those in E50, E100, and E200 groups during the E2 treatments period (P < 0.05). In conclusion, our study suggested that 50-100 mg/kg E2-treated diets could effectively induce the feminization of 15 dph Largemouth bass within 60 days duration time, which provided valuable information for the breeding of the all-male Largemouth bass population.


Asunto(s)
Lubina , Animales , Lubina/genética , Estradiol/farmacología , Femenino , Feminización , Gónadas , Masculino , Diferenciación Sexual
5.
Cryobiology ; 76: 104-110, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28395972

RESUMEN

Yellow catfish (Pelteobagrus fulvidraco) is a promising aquaculture species in China with an increasing market demand. To serve the growing demand of male broodstock for artificial fertilization and the preservation of valuable strains for selective breeding, we tried to develop a species-specific cryopreservation protocol for yellow catfish sperm in this study. Important factors such as cryoprotectant, freezing height above the liquid nitrogen (LN) surface, dilution ratio, equilibration time, thawing temperature and cool storage before freezing were standardized. Among the cryoprotectants tested here, 10% Me2SO was the most suitable for sperm cryopreservation. Freezing at 7 cm above the LN surface for 10 min yielded the highest post-thaw motility. Further evaluation showed that dilution ratio of 1:3 and 1:5 produced higher post-thaw motility than semen diluted at 2:1, 1:1, 1:9 or 1:19. Equilibration times from 0 to 30 min did not cause significant differences in both equilibrated and post-thaw motility. Also, cool storage up to 24 h did not affect the suitability of sperm for cryopreservation. After thawing, sperm could be stored at 4 °C for 2 h without a reduction in motility parameters. With the combination of optimized freezing conditions, the fertilization and hatching rate of cryopreserved sperm were 87.1 ± 5.2% and 78.5 ± 7.4%, respectively, which were similar to those of fresh sperm (91.8 ± 3.5% and 83.7 ± 2.5%). In general, the cryopreservation protocol optimized here would facilitate breeding practice and hatchery operation in this economically important fish.


Asunto(s)
Bagres , Criopreservación/métodos , Preservación de Semen/métodos , Animales , Crioprotectores/farmacología , Dimetilsulfóxido/farmacología , Fertilización , Congelación , Masculino , Motilidad Espermática , Espermatozoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA