Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; : 119437, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897436

RESUMEN

Vertical migration behaviour, which is integral to marine energy circulation, is a prevalent trait among marine organisms. However, the behaviour of phytoplankton, particularly beyond diel vertical migration (DVM), remain underexplored compared to groups like zooplankton. Through the lens of the harmful alga Heterosigma akashiwo, which exhibits unique vertical migrations and fluctuating red tide patterns, this study aimed to explore the ecological intricacies and diverse benefits of phytoplankton vertical migration behaviours. During the bloom period of H. akashiwo, we unexpectedly observed a dense concentration of cells at bottom layer during daytime. This phase coincided with the emergence of cells related to this species' sexual reproduction. Laboratory experiments further showed an elevated frequency of sexual reproduction in the cell populations that migrated to deeper depths compared to those at the surface. This finding implies a connection between dense bottom accumulation (BA) and the life cycle transitions of the species. This BA phase persisted for two days, after which the populations returned to their standard DVM behaviour, providing insight into the unique fluctuating red tide patterns of H. akashiwo. Our study suggests that phytoplankton vertical migrations are not strictly dictated by DVM, revealing diverse vertical migration behaviours that may contribute to the complexity of harmful algal bloom patterns.

2.
Toxins (Basel) ; 14(2)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35202155

RESUMEN

Blooms of harmful cyanobacteria Microcystis aeruginosa lead to an adverse effect on freshwater ecosystems, and thus extensive studies on the control of this cyanobacteria's blooms have been conducted. Throughout this study, we have found that the two bacteria Aeromonas bestiarum HYD0802-MK36 and Pseudomonas syringae KACC10292T are capable of killing M. aeruginosa. Interestingly, these two bacteria showed different algicidal modes. Based on an algicidal range test using 15 algal species (target and non-target species), HYD0802-MK36 specifically attacked only target cyanobacteria M. aeruginosa, whereas the algicidal activity of KACC10292T appeared in a relatively broad algicidal range. HYD0802-MK36, as a direct attacker, killed M. aeruginosa cells when direct cell (bacterium)-to-cell (cyanobacteria) contact happens. KACC10292T, as an indirect attacker, released algicidal substance which is located in cytoplasm. Interestingly, algicidal activity of KACC10292T was enhanced according to co-cultivation with the host cyanobacteria, suggesting that quantity of algicidal substance released from this bacterium might be increased via interaction with the host cyanobacteria.


Asunto(s)
Aeromonas/química , Toxinas Bacterianas/toxicidad , Floraciones de Algas Nocivas/efectos de los fármacos , Herbicidas/toxicidad , Microcystis/efectos de los fármacos , Pseudomonas syringae/química
3.
Sci Rep ; 10(1): 10653, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606343

RESUMEN

Different clades belonging to the cosmopolitan marine diatom Pseudo-nitzschia pungens appear to be present in different oceanic environments, however, a 'hybrid zone', where populations of different clades interbreed, has also been reported. Many studies have investigated the sexual reproduction of P. pungens, focused on morphology and life cycle, rather than the role of sexual reproduction in mixing the genomes of their parents. We carried out crossing experiments to determine the sexual compatibility/incompatibility between different clades of P. pungens, and examined the genetic polymorphism in the ITS2 region. Sexual reproduction did not occur only between clades II and III under any of experimental temperature conditions. Four offspring strains were established between clade I and III successfully. Strains established from offspring were found interbreed with other offspring strains as well as viable with their parental strains. We confirmed the hybrid sequence patterns between clades I and III and found novel sequence types including polymorphic single nucleotide polymorphisms (SNPs) in the offspring strains. Our results implicate that gene exchange and mixing between different clades are still possible, and that sexual reproduction is a significant ecological strategy to maintain the genetic diversity within this diatom species.


Asunto(s)
Diatomeas/genética , Polimorfismo de Nucleótido Simple/genética , Reproducción/genética , Estadios del Ciclo de Vida/genética , Océanos y Mares , Filogenia
4.
Harmful Algae ; 84: 119-126, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31128796

RESUMEN

During the bloom events of the harmful dinoflagellate Cochlodinium polykrikoides in August and October, 2012, infections by two different Amoebophrya species were observed in Korean coastal waters. To investigate the dynamics of the two parasites and their relative impact on the host populations, a quantitative real-time PCR (qPCR) method was applied to detect and quantify the parasites in the free-living and parasitic stages. Each specific primer set of the target species, Amoebophrya sp. 1 and sp. 2 was designed on the large subunit (LSU) and the first internal transcribed spacer (ITS1) of ribosomal RNA (rRNA) gene, respectively. Dynamics of the two Amoebophrya species via qPCR assay showed distinct patterns during the C. polykrikoides bloom events. Amoebophrya sp. 1 showed peaks during both bloom events in August and October with relatively low copies (106 to 107 copies L-1), while Amoebophrya sp. 2 appeared only during the bloom event in October with very high copies (109 to 1010 copies L-1). Overall, the qPCR measurements for the dynamics of two Amoebophrya species in the parasitic stage (> 5 µm fractions) were consistent with parasite prevalence through microscopic observations. Amoebophrya sp. 1 infections were observed during both bloom events in August and October with relatively low parasite prevalence (0.1-1.5%), while Amoebophrya sp. 2 infections were detected only during the bloom event in October with high prevalence (up to 45%). Taken together, Amoebophrya sp. 1 may be a generalist and C. polykrikoides may not be its primary host, while Amoebophrya sp. 2 may be a specialist which can substantially impact host population dynamics.


Asunto(s)
Dinoflagelados , Parásitos , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa , República de Corea
5.
Bioresour Technol ; 288: 121472, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31125934

RESUMEN

Lipid production in microalgae can be induced by various stress factors. However, stress induced lipid accumulation requires considerable time leading to the decrease in lipid productivity. Here, we attempted to increase the lipid productivity while maintaining the high growth of Ettlia sp. by optimizing nitrogen concentration and UV exposure in a continuous culture. The biomass and lipid productivities of Ettlia sp. cultured with 150 mg N L-1 and UV-A added PAR were 1.67 ±â€¯0.08 g L-1 d-1 and 0.55 ±â€¯0.05 g L-1 d-1, respectively. Lipid productivity and lipid content were around 43.7% and 33.7% higher, respectively in UV-A treatment compared to the control. Moreover, gene-expression patterns related to antioxidant defense and intracellular ROS levels indicated that UV-A affected certain ROS and antioxidants pathways and successfully induced the lipid accumulation in Ettlia sp. This strategy to activate lipid accumulation can be applied in other microalgae without affecting their growth.


Asunto(s)
Microalgas , Biomasa , Chlorophyceae , Lípidos
6.
Sci Rep ; 8(1): 11595, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072763

RESUMEN

To mitigate cyanobacterial blooms, the naphthoquinone derivative, NQ 2-0, which has selective algicidal activity against cyanobacteria, has been developed. However, due to a lack of information on its algicidal mechanisms, there are significant gaps in our understanding of how this substance is capable of selectively killing cyanobacteria. Here, we investigated the selective algicidal mechanisms of NQ 2-0 using target (Microcystis aeruginosa) and non-target (Cyclotella sp. and Selenastrum capricornutum) species. NQ 2-0 showed selective algicidal activity against only M. aeruginosa, and this activity was strongly light-dependent. This NQ compound has selectively reduced the oxygen evolution rate and photosystem II (PSII) efficiency of M. aeruginosa throughout blocking electron transfer from the photosynthetic electron transport system, and significantly (p ≤ 0.05) increased levels of reactive oxygen species (ROS), resulting in membrane damage through lipid peroxidation. In ultrastructural observations, thylakoid membranes were disintegrated within 12 h after NQ 2-0 treatment, and cytoplasmic vacuolation and disintegrated cellular membrane were observed at 24 h. These findings suggest that increased ROS levels following NQ 2-0 treatment may induce cell death. Interestingly, compared to non-target eukaryotic cells, M. aeruginosa showed relatively late antioxidant response to reduce the increased ROS level, this may enhance algicidal activity against this cyanobacterium.


Asunto(s)
Herbicidas , Peroxidación de Lípido/efectos de los fármacos , Microcystis/metabolismo , Naftoquinonas , Complejo de Proteína del Fotosistema II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Herbicidas/farmacología , Naftoquinonas/química , Naftoquinonas/farmacología
8.
Biotechnol Biofuels ; 11: 102, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636820

RESUMEN

BACKGROUND: Amelioration of biofuel feedstock of microalgae using sustainable means through synthetic ecology is a promising strategy. The co-cultivation model (Tetraselmis striata and Pelagibaca bermudensis) was evaluated for the robust biofuel production under varying stressors as well as with the selected two-stage cultivation modes. In addition, the role of metabolic exudates including the quorum-sensing precursors was assessed. RESULTS: The co-cultivation model innovated in this study supported the biomass production of T. striata in a saline/marine medium at a broad range of pH, salinity, and temperature/light conditions, as well as nutrient limitation with a growth promotion of 1.2-3.6-fold. Hence, this developed model could contribute to abiotic stress mitigation of T. striata. The quorum-sensing precursor dynamics of the growth promoting bacteria P. bermudensis exhibited unique pattern under varying stressors as revealed through targeted metabolomics (using liquid chromatography-mass spectrometry, LC-MS). P. bermudensis and its metabolic exudates mutually promoted the growth of T. striata, which elevated the lipid productivity. Interestingly, hydroxy alkyl quinolones independently showed growth inhibition of T. striata on elevated concentration. Among two-stage cultivation modes (low pH, elevated salinity, and nitrate limitation), specifically, nitrate limitation induced a 1.5 times higher lipid content (30-31%) than control in both axenic and co-cultivated conditions. CONCLUSION: Pelagibaca bermudensis is established as a potential growth promoting native phycospheric bacteria for robust biomass generation of T. striata in varying environment, and two-stage cultivation using nitrate limitation strategically maximized the biofuel precursors for both axenic and co-cultivation conditions (T and T-PB, respectively). Optimum metabolic exudate of P. bermudensis which act as a growth substrate to T. striata surpasses the antagonistic effect of excessive hydroxy alkyl quinolones [HHQ, 4-hydroxy-2-alkylquinolines and PQS (pseudomonas quorum signal), 2-heptyl-3-hydroxy-4(1H)-quinolone].

9.
Harmful Algae ; 73: 72-83, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29602508

RESUMEN

Genetic sub-populations (clades) of cosmopolitan marine diatom Pseudo-nitzschia pungens might have distinct habitats, and their hybrid zone is suspected in higher latitude area of the West Pacific area, however, it is still unrevealed because of technical difficulties and lack of evidences in natural environments. The aim of this study is to investigate the habitat characteristics of each clade of P. pungens on geographical distribution with the habitat temperature ranges of each clade and to reveal their hybrid zone in the West Pacific area. We employed the 137 number of nucleotide sequences of P. pungens and its sampling data (spatial and temporal scale) originated from the West Pacific area, and used field application of qPCR assay for intra-specific level of P. pungens. Only two genotypes, clade I and III, were identified in the West Pacific area. Clade I was distributed from 39 to 32.3°N, and clade III were from 1.4 to 34.4°N. The estimated habitat temperature for the clade I and clade III ranges were 8.1-26.9 °C and 24.2-31.2 °C, respectively. The latitudinal distributions and temperature ranges of each clade were significantly different. The qPCR assay employed, and results suggested that the hybrid zone for clade I and III has been observed in the southern Korean coasts, and clade III might be introduced from the Southern Pacific area. The cell abundances of clade III were strongly related with the higher seawater temperature and warm current force. This study has defined distinct habitat characteristics of genetically different sub-populations of P. pungens, and revealed its hybrid zone in natural environment for the first time. We also provided strong evidences about dispersion of the population of clade III to higher latitude in the West Pacific area.


Asunto(s)
Diatomeas/genética , Diatomeas/fisiología , Ecosistema , Hibridación Genética , ADN/genética , Demografía , Genotipo , Océano Pacífico , Filogenia
10.
Harmful Algae ; 71: 78-88, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29306398

RESUMEN

Although there have been extensive studies on dinoflagellate blooms in recent decades, the mechanism that allows the maintenance of blooms over long periods remains uncertain, and studies on genetically differentiated subpopulations may provide insights into this mechanism. In this study, the influence of two genetically distinct subpopulations of the dinoflagellate Cochlodinium polykrikoides, referred to as Group I and IV, on bloom duration in Korean coastal waters (KCW) was examined using a quantitative PCR (qPCR) assay. In this study, a C. polykrikoides bloom occurred over a longer period in 2009 (49 days), whereas the bloom period was shorter in 2010 (35 days). The qPCR results indicate that intraspecific bloom succession between Groups I and IV occurred in 2009, whereas only a single subpopulation (Group I) was responsible for the bloom in 2010. Based on the statistical analysis, the Group I and Group IV blooms occurred under significantly different environmental conditions (p ≤ 0.05) in terms of water temperature, pH, and phosphate concentration, and these subpopulations exhibited significantly different relationships with environmental factors, particularly water temperature (p < 0.01). This variability may allow blooms to continue through intraspecific bloom succession even after environmental conditions change. Southern KCW are affected by outer regions via the Tsushima Warm Current (TWC) every summer. Group IV (≤1108 ±â€¯69 cells L-1) was primarily observed along the route of the TWC in summer 2009, when the bloom of this subpopulation occurred in southern KCW. These results suggest that Group IV transported via the TWC may have influenced the bloom dynamics of this subpopulation in summer 2009.


Asunto(s)
Dinoflagelados/fisiología , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Agua de Mar/parasitología , Dinoflagelados/clasificación , Reacción en Cadena de la Polimerasa , República de Corea , Estaciones del Año
11.
Microb Ecol ; 75(1): 163-173, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28721505

RESUMEN

Despite the importance of understanding the bloom mechanisms that influence cyanobacterial toxin production, the dynamics of toxic Microcystis subpopulations are largely unknown. Here, we quantified both toxic and entire (i.e., toxic and non-toxic) Microcystis populations based on the microcystin synthetase E (mcyE) and 16S ribosomal RNA genes. Samples were collected from pelagic water and sediments twice per week from October to December 2011, and we investigated the effects of physicochemical factors (pH, water temperature, dissolved oxygen, nutrients, etc.) and biological factors (ciliates and zooplankton) on the abundance of toxic and non-toxic Microcystis. During the study period, Microcystis blooms were composed of toxic and non-toxic subpopulations. Resting stage Microcystis in sediment may be closely linked to Microcystis populations in pelagic water and may contribute to the toxic subpopulation composition in surface Microcystis blooms. In pelagic water, the toxic and entire Microcystis population had a significant positive correlation with the pH and water temperature (p < 0.05). However, their responses to changes in environmental factors were thought to be distinct. The ratio of the toxic to non-toxic Microcystis subpopulations was significantly (p < 0.05) enhanced by a lower pH and water temperature and an increase in protozoan grazers, reflecting environmental stresses. These results suggest that the toxic and non-toxic subpopulations of Microcystis have distinct tolerance levels against these stressors. The intracellular microcystin (MC) concentration was positively associated with the abundance of the mcyE-positive Microcystis. By comparison, the MC concentration in pelagic water body (extracellular) increased when Microcystis was lysed due to environmental stresses.


Asunto(s)
Lagos/microbiología , Microcystis/crecimiento & desarrollo , Toxinas Bacterianas/metabolismo , Toxinas de Cianobacterias , Ecosistema , Eutrofización , Lagos/química , Toxinas Marinas/metabolismo , Microcistinas/metabolismo , Microcystis/clasificación , Microcystis/genética , Microcystis/metabolismo , Filogenia , República de Corea , Estaciones del Año , Temperatura
12.
Harmful Algae ; 68: 152-167, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28962976

RESUMEN

The identification of a new suite of toxins, called azaspiracids (AZA), as the cause of human illnesses after the consumption of shellfish from the Irish west coast in 1995, resulted in interest in understanding the global distribution of these toxins and of species of the small dinoflagellate genus Azadinium, known to produce them. Clonal isolates of four species of Azadinium, A. poporum, A. cuneatum, A. obesum and A. dalianense were obtained from incubated sediment samples collected from Puget Sound, Washington State in 2016. These Azadinium species were identified using morphological characteristics confirmed by molecular phylogeny. Whereas AZA could not be detected in any strains of A. obesum, A. cuneatum and A. dalianense, all four strains of A. poporum produced a new azaspiracid toxin, based on LC-MS analysis, named AZA-59. The presence of AZA-59 was confirmed at low levels in situ using a solid phase resin deployed at several stations along the coastlines of Puget Sound. Using a combination of molecular methods for species detection and solid phase resin deployment to target shellfish monitoring of toxin at high-risk sites, the risk of azaspiracid shellfish poisoning can be minimized.


Asunto(s)
Dinoflagelados/química , Toxinas Marinas/toxicidad , Compuestos de Espiro/toxicidad , Dinoflagelados/aislamiento & purificación , Dinoflagelados/ultraestructura , Geografía , Funciones de Verosimilitud , Toxinas Marinas/química , Conformación de Ácido Nucleico , Filogenia , Compuestos de Espiro/química , Washingtón
13.
Bioresour Technol ; 244(Pt 1): 621-628, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28810216

RESUMEN

The optimal culture conditions are critical factors for high microalgal biomass and lipid productivity. To optimize the photoautotrophic culture conditions, combination of the pH (regulated by CO2 supply), dilution rate, and light intensity was systematically investigated for Ettlia sp. YC001 cultivation in a chemostat during 143days. The biomass productivity increased with the increase in dilution rate and light intensity, but decreased with increasing pH. The average lipid content was 19.8% and statistically non-variable among the tested conditions. The highest biomass and lipid productivities were 1.48gL-1d-1 and 291.4mgL-1d-1 with a pH of 6.5, dilution rate of 0.78d-1, and light intensity of 1500µmolphotonsm-2s-1. With a sufficient supply of CO2 and nutrients, the light intensity was the main determinant of the photosynthetic rate. Therefore, the surface-to-volume ratio of a photobioreactor should enable efficient light distribution to enhance microalgal growth.


Asunto(s)
Chlorophyta , Luz , Fotobiorreactores , Biomasa , Lípidos , Microalgas
14.
Environ Pollut ; 229: 735-745, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28596061

RESUMEN

The novel eco-friendly algaecidal naphthoquinone derivate was used to control harmful algal bloom causing species Stephanodiscus and, its effect was assessed on other undesired and non-targeted microbial communities. We conducted a mesocosm experiment to investigate the effects of this novel algaecide on native microbial communities rearing in water collected from Nakdonggang River. Upon treatment of the mesocosm with the naphthoquinone derivate the concentration of Chl-a decreased from 20.4 µg L-1 to 9.5 µg L-1 after 2 days. The turbidity has also shown decrement (exhibited 15.5 NTU on the 7th day). The concentrations of DOC and phosphate in the treatment were slightly higher than those in the control due to the decomposition of dead Stephanodiscus, whereas the DO and pH in the treated condition were slightly lower than those in the control; which was due to increment of organic acids and higher degradation activity. Results showed that bacterial abundance were not significantly different but community composition were slightly different as revealed by NGS (Next generation sequencing). The variation in HNF (Heterotrophic nanoflagellates) revealed that the bacterial community composition changed following the change in bacterial abundance. During the treatment, the abundance of Stephanodiscus was significantly reduced by more than 80% after 6 days, and the abundance of ciliates and the dominant species, Halteria grandinella, had shown marked decline. The abundance of zooplankton sharply decreased to 5 ind. L-1on the 8th day but increased again by the end of the study period. The Shannon-Wiener diversity index of phytoplankton, ciliates and zooplankton in the treated mesocosm increased significantly after 4, 7 and 8 days, respectively. The marked changes in the ecosystem structure were observed in treatment compare to control. However, the beneficial microalgal populations were not affected which indicated possibility of restoration of treated ecosystem and regain of healthy community structure after certain period.


Asunto(s)
Diatomeas/fisiología , Desinfectantes/toxicidad , Naftoquinonas/toxicidad , Animales , Cilióforos , Desinfectantes/análisis , Ecología , Ecosistema , Floraciones de Algas Nocivas , Procesos Heterotróficos , Secuenciación de Nucleótidos de Alto Rendimiento , Naftoquinonas/análisis , Fitoplancton/metabolismo , Medición de Riesgo , Zooplancton
15.
Harmful Algae ; 63: 68-78, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28366401

RESUMEN

Three genetic sub-populations (clade I, II and III) of Pseudo-nitzschia pungens, the potential toxic marine diatom, are known to have distinguishable growth characteristics under different culture conditions and distinct distributed patterns in the world. However, to date their exact eco-physiological traits are unrevealed in fields due to lack of the method to detect and/or measure abundances of each sub-populations, hence, the qPCR (quantitative real-time polymerase chain reaction) assay was developed to detect and quantify the P. pungens cells of each clade. Designed two specific primer sets, Pcla12F/R (for clade I and II) and Pcla3F/R (for clade III) only could amplify each target genomic DNA. The, significant linear relationships (R2>0.998) was established between Ct (threshold cycle) value and the log of cell abundance for each clade. Through the melting curve analysis, comparisons for gene copy numbers among the three clades and spike test for field study, our qPCR assay was reliable to quantify the cell numbers of each clade. There was strong linear correlation (R2>0.990) between cell abundances as estimated by qPCR assay and direct counting via light microscope in spike test, and 0.24 (clade I), 0.25 (clade II) and 0.33 (clade III) P. pungens cells per mL were detected markedly upon the use of specific two-primer set. Finally, developed qPCR assay was applied on field samples successfully. Our study implicate that our qPCR assay is an accurate and sensitive technique to estimate the cell abundances of each clade of P. pungens in field works.


Asunto(s)
Diatomeas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , ADN Ribosómico/genética , Agua de Mar/análisis
16.
Ecotoxicol Environ Saf ; 141: 188-198, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28349870

RESUMEN

In previous studies, naphthoquinone (NQ) compounds have been shown to be effective, selective, and ecologically safe algicides for controlling harmful algal blooming species (HABs) or winter bloom species, such as Stephanodiscus hantzschii. However, there are no reports on NQ-based algicides for use with cyanobacterial blooming species. In this study, we developed 31 NQ compounds to investigate algicides for mitigating cyanobacterial blooms. In addition, to better apply these compounds in the field, we reduced the number of production steps to develop a cost-effective algicide. In preliminary testing, we screened NQ compounds that showed the best algicidal activity on target cyanobacteria, including Aphanizomenon, Dolichospermum, Microcystis, Oscillatoria, and Nostoc species. The compound NQ 2-0 showed the highest algicidal activity (90%) at a low concentration (≥1µM) on target algae. These were very limiting algicidal effects of 1µM NQ 2-0 observed against non-target algae, such as diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana, Synedra acus, and Aulacoseira granulata) or green algae (Cosmarium bioculatum and Scenedesmus quadricauda), and the effect did not exceed 15-25% (except against S. quadricauda). NQ 2-0 (1µM) showed no eco-toxicity, as represented by the survival rates of Pseudokirchneriella subcapitata (100%), Daphnia magna (100%), and Danio rerio (100%). Additionally, a chronic eco-toxicity assessment showed no toxicity toward the survival, growth or reproduction of D. magna. Moreover, NQ 2-0 quickly dissipated from field water samples and had a half-life of approximately 3.2 days. These results suggest that NQ 2-0 could be a selective and ecologically safe algicide to mitigate harmful cyanobacterial blooms.


Asunto(s)
Cianobacterias/efectos de los fármacos , Floraciones de Algas Nocivas/efectos de los fármacos , Herbicidas/farmacología , Naftoquinonas/farmacología , Animales , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Daphnia/efectos de los fármacos , Daphnia/crecimiento & desarrollo , Diatomeas/efectos de los fármacos , Diatomeas/crecimiento & desarrollo , Ecología , Semivida , Herbicidas/química , Herbicidas/toxicidad , Naftoquinonas/química , Naftoquinonas/toxicidad , Estaciones del Año , Factores de Tiempo , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
17.
Front Plant Sci ; 8: 289, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28321229

RESUMEN

Effective sustainable algal cultivation techniques are essential for mass production of the marine microalga Tetraselmis for biofuel and array of co-products. The phycospheric communities affect the microalgal growth and metabolism through various allelochemical and nutrient interactions; hence, their potential to affect the quantity and quality of both biomass and bioproducts is significant. In the present study, we have screened the phycospheric communities of biofuel producing Tetraselmis striata (KCTC1432BP). A total of 26 bacterial strains were isolated and identified from the phycosphere of T. striata mass culture. Then, each bacterial strain was tested in co-cultivation conditions with T. striata for evaluating its growth promoting and inhibitory effects. Among these all strains, two promising strains (Pelagibaca bermudensis KCTC 13073BP and Stappia sp. KCTC 13072BP) were selected because of their maximum growth promoting effects and mutualistic interactions. The growth rate, biomass productivity, lipid contents, and fatty acids were analyzed during their combined growth in O3 media and compared with axenic growth of T. striata. Later, growth promoting mechanisms in the co-cultivation environment were investigated for these promising bacterial strains under replete and limited conditions of nutrients (nitrate, phosphate, and vitamin B12). The growth promoting potential of P. bermudensis was illustrated by the two fold enhancement in biomass productivity. These bacteria are promising for microalgal cultivation without any negative effects on the native seawater bacterial communities, as revealed by next generation sequencing analysis. This study represents, to date, the first report highlighting the role of phycospheric growth promoting bacteria of promising biofuel feedstock T. striata.

18.
Protist ; 167(1): 32-50, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26821248

RESUMEN

Prorocentrum micans is an extremely variable dinoflagellate species, with many different local forms reported worldwide. Because of this morphological diversity, it is important to establish whether these various forms belong to P. micans sensu stricto. For this study, P. micans-like specimens were isolated from several localities in the southern coastal waters of Korea and Japan. The morphological characteristics and the molecular signatures of P. micans were re-examined. Moreover, a new Prorocentrum species, Prorocentrum koreanum sp. nov. was established through detailed light microscopy and scanning electron microscopy observations. Examination of the periflagellar platelets revealed that P. koreanum sp. nov. differs from P. micans. Furthermore, P. koreanum and P. micans exhibited different distribution patterns of trichocyst pores. Through molecular phylogeny analysis of small subunit (SSU) rRNA, internal transcribed spacer (ITS), and large subunit (LSU) rRNA sequence, we found P. koreanum to be more closely related to P. mexicanum and P. rhathymum than to P. micans. Additionally, ITS2 compensatory base changes also provide strong evidence to support P. koreanum and P. micans being separate species.


Asunto(s)
Dinoflagelados/clasificación , Dinoflagelados/genética , Filogenia , ARN Protozoario/genética , Dinoflagelados/citología , Dinoflagelados/ultraestructura , Japón , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , República de Corea , Análisis de Secuencia de ADN
19.
PLoS One ; 11(1): e0145712, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26741648

RESUMEN

The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.


Asunto(s)
ADN de Algas/aislamiento & purificación , Estadios del Ciclo de Vida/genética , Fitoplancton/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estramenopilos/genética , Calibración , Variaciones en el Número de Copia de ADN , ADN de Algas/genética , Sedimentos Geológicos , Calor , Océano Pacífico , Fitoplancton/crecimiento & desarrollo , República de Corea , Estramenopilos/crecimiento & desarrollo
20.
Harmful Algae ; 56: 29-36, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-28073494

RESUMEN

Several studies on various Chattonella species have reported that bacteria may play an important role in Chattonella bloom initiation, however, no studies have described how these bacteria promote the growth of C. marina. The interaction between C. marina and bacteria was investigated for identification and characterization of potential growth-promoting bacteria. In preliminary tests, the growth promoting effect of Pseudomonas species (25 strains) was investigated and P. asplenii (≥2.27) was determined as a growth-promoting bacteria for both C. marina strains (CCMP 2049 and 2050). This bacterium exerted optimal growth-promoting effects on C. marina, causing an increase in the initial density of P. asplenii to approximately 1×107cellsmL-1, which was used as the initial density in this study. To determine whether the growth-promoting activity was direct or indirect, P. asplenii was incubated in the algal media and then a filtrate of this culture was added to both C. marina strains. The P. asplenii filtrate stimulated the growth of C. marina and maintained the growth-promoting effects after high temperature (121°C for 20min) and pressure (15psi) treatment. Thus, P. asplenii is able to promote C. marina growth through the release of a heat-resistant substance, such as inorganic nutrients. A nutrient analysis indicated that this bacterium elevated the phosphate concentration. Interestingly, P. asplenii was unable to survive in phosphate-limited media but could grow in phosphate-limited media incubating C. marina. Moreover, this bacterium could secrete significantly more phosphate in the presence of C. marina (p<0.0001). These results suggested that P. asplenii and C. marina may have a mutualistic interaction.


Asunto(s)
Pseudomonas/fisiología , Estramenopilos/fisiología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...