Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 118: 109293, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401393

RESUMEN

Pulmonary fibrosis (PF) is a crippling disease characterized by progressive dyspnea and associated with a high mortality rate, but its origin is unknown and there is no effective treatment. Yifei Sanjie formula (YFSJF) is a Chinese medicine that is widely used for treatment of respiratory systems disease. However, the molecular basis for the function of YFSJF has not been determined. Here we investigate the contribution of YFSJF in BLM-induced PF mice. Administration with YFSJF significantly alleviated the degree of BLM-induced collagen I and III deposition and the inflammatory injuring in the lungs and suppressed hydroxyproline release in PF animals. The active components of YFSJF are comprised with flavonoid, amino acids, saponins, oligosaccharide, organic acid, vitamin, esters, purine nucleosides. Additionally, there was a significant increase in autophagosomes, after treatment with YFSJF in PF animals. Interestingly, autophagy dysfunction by the blocker chloroquine (CQ) resulted in collagen deposition and inducing the expression of fibrosis-related genes. In addition, YFSJF-induced autophagy is mediated by the PI3K-AKT-mTOR pathway, and knockdown of PI3K by siRNA up-regulated the expression of autophagy-related genes and down-regulated the expression of collagen in human lung fibroblasts (HLF). Our findings provide a detailed understanding that YFSJF-antifibrotic effects are mainly mediated by triggering autophagy, and suppressing phosphorylation of the PI3K-AKT-mTOR pathway is required for YFSJF-curative effect.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Humanos , Inflamación/complicaciones , Inflamación/patología , Pulmón/patología , Masculino , Fosforilación/efectos de los fármacos , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-30532794

RESUMEN

Flora and mucosal immunity are considered to be the barrier, which is associated with multiple respiratory diseases, including recurrent respiratory tract infection (RRTI). Fei-Xi-Tiao-Zhi-Fang (FTF) is a traditional Chinese herbal formula used in the treatment of RRTI. However, the mechanism is little known. This study aims to identify the function of FTF in flora and mucosal immune secretory immunoglobulin A (sIgA) in the model of RRTI rats. The samples of intestine and lung were collected to detect sIgA, short chain fatty acids (SCFAS), and flora with enzyme-linked immunosorbent assay (ELISA), gas chromatography, and 16S rDNA sequencing. The body weight and viscera index were increased dynamically in RRTI rats after the administration of FTF. Furthermore, the types and proportions of aboriginal flora were significantly changed in the model group, whereas the altered flora was rescued in the FTF administration group. Desulfovibrio increased in the intestinal microflora and Ralstonia and Blautia decreased in the pulmonary microflora at the genus level, similar to that in the normal group. In addition, the expressions of sIgA in pulmonary and intestinal tissues were significantly upregulated and the level of SCFAS was increased in FTF group compared to the RRTI model group. Our study suggests that FTF can alleviate the symptoms of RRTI by increasing sIgA and SCFAS, recovering flora, and improving the immunity.

3.
Iran J Basic Med Sci ; 19(9): 993-1002, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27803787

RESUMEN

OBJECTIVES: Yu-Ping-Feng-San (YPFS) is a classical traditional Chinese medicine that is widely used for treatment of the diseases in respiratory systems, including chronic obstructive pulmonary disease (COPD) recognized as chronic inflammatory disease. However, the molecular mechanism remains unclear. Here we detected the factors involved in transforming growth factor beta 1 (TGF-ß1)/Smad2 signaling pathway and inflammatory cytokines, to clarify whether YPFS could attenuate inflammatory response dependent on TGF-ß1/Smad2 signaling in COPD rats or cigarette smoke extract (CSE)-treated human bronchial epithelial (Beas-2B) cells. MATERIALS AND METHODS: The COPD rat model was established by exposure to cigarette smoke and intratracheal instillation of lipopolysaccharide, YPFS was administered to the animals. The efficacy of YPFS was evaluated by comparing the severity of pulmonary pathological damage, pro-inflammation cytokines, collagen related genes and the activation of TGF-ß1/Smad2 signaling pathway. Furthermore, CSE-treated cells were employed to confirm whether the effect of YPFS was dependent on the TGF-ß1/Smad2 signaling via knockdown Smad2 (Si-RNA), or pretreatment with the inhibitor of TGF-ß1. RESULTS: Administration of YPFS effectively alleviated injury of lung, suppressed releasing of pro-inflammatory cytokines and collagen deposition in COPD animals (P<0.05), whereas exogenous TGF-ß1 promoted releasing of IL-1ß, IL-6, TNFα (P<0.05). Administration YPFS reduced inflammatory response significantly, also down-regulated TGF-ß1/Smad2 signaling in vivo and in vitro. Unexpectedly, knockdown Smad2 or inhibition of TGF-ß1 abolished anti-inflammatory effect of YPFS in CSE-treated cells. CONCLUSION: YPFS accomplished anti-inflammatory effects mainly by suppressing phosphorylation of Smad2, TGF-ß1/Smad2 signaling pathway was required for YPFS-mediated anti-inflammation in COPD rats or CSE-treated Beas-2B cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...