Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Radiol Case Rep ; 19(7): 2874-2878, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38706816

RESUMEN

Tumor-to-tumor metastasis is a known but rare occurrence and is characterized as 2 distinct tumor types in same anatomic location. We present a rare case of intracranial tumor-to-tumor metastasis of esophageal adenocarcinoma into meningioma. Our case emphasizes the rare occurrence of intracranial tumor-to-tumor metastasis and importance of histology and immunohistochemical analysis in distinguishing between metastasis and meningioma, especially when faced with ambiguous demarcation. Awareness of this occurrence is crucial, given that metastases might be the initial indication of an underlying tumor and it can impact the clinical management decisions.

2.
J Environ Manage ; 359: 121039, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38710150

RESUMEN

Enterprise digital transformation (EDT) is a strategic initiative that provides robust support for optimising resource allocation, fosters business innovation, and significantly impacts ecological environment to increase financial performance. This study re-examines the substantial contributions of EDT to climate change mitigation. Drawing on data from Chinese A-share listed companies from 2010 to 2021, we investigated the changes and mechanisms influencing carbon emissions reduction performance (CERP) of enterprises undergoing digital transformation. The empirical results indicate that EDT actively contributes to enhancing the CERP of enterprises, with a more pronounced effect observed in non-polluting industries, state-owned enterprises, and manufacturing companies. Furthermore, empirical findings from mechanism tests reveal that EDT effectively improves the CERP by driving green technological innovation, strengthening industry chain connections, and enhancing capacity utilisation. Finally, within external oversight groups, particularly in government and investor supervision, the enhancement of enterprise CERP is more significant, highlighting the crucial role of external oversight in the EDT process.

3.
J Virol ; 98(5): e0045124, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591877

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance. IMPORTANCE: The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Microscopía por Crioelectrón , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Animales , Humanos , Artiodáctilos/virología , COVID-19/virología , COVID-19/metabolismo , Sitios de Unión , Betacoronavirus/genética , Betacoronavirus/metabolismo
4.
J Virol ; 98(3): e0115723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305152

RESUMEN

Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Cricetulus , Microscopía por Crioelectrón , Especificidad del Huésped , Mesocricetus , Animales , Cricetinae , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/ultraestructura , Línea Celular , COVID-19/virología , Cricetulus/metabolismo , Cricetulus/virología , Mesocricetus/metabolismo , Mesocricetus/virología , Mutación , Mascotas/metabolismo , Mascotas/virología , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestructura , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/ultraestructura
5.
Heliyon ; 10(1): e23459, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169953

RESUMEN

This study examines how the digital economy era has enhanced corporate social responsibility (CSR) in China. Using data from Chinese listed companies (2013-2021) for economic research, an econometric model was constructed to assess CSR's impact on the digital economy. The study findings indicate that the digital economy promotes CSR performance among companies and the influence of the digital economy on CSR performance is pronounced for state-owned and large-scale enterprises. After categorising CSR into three levels: financial, human, and social capital, the results demonstrate that the digital economy continues to facilitate CSR fulfilment across all levels, with the most significant impact observed at the human capital level. Mechanism tests suggest that the digital economy improves CSR fulfilment by alleviating financial constraints, facilitating digital transformation, and enhancing the transparency of internal control information within enterprises.

6.
Adv Healthc Mater ; 13(2): e2302280, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37812035

RESUMEN

Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular
8.
Clin Hemorheol Microcirc ; 85(4): 341-354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37742629

RESUMEN

BACKGROUND: VueBoxtrademark has been used for contrast analysis in DCE-US-based quantitative research. OBJECTIVE: Aim of this study was to use the enhancement-mode and VueBoxtrademark parameters to further evaluate the differential diagnostic value of DCE-US for renal tumors. METHODS: 24 patients with renal tumors, including 7 benign and 17 malignant, were retrospectively analyzed.The DCE-US enhancement-mode and VueBoxtrademark parameters correlated with the histological analyses of tumors were obtained and analyzed. RESULTS: The benign and malignant renal tumors showed significant differences in enhancement degree (P = 0.017) and presence of a pseudocapsule (P = 0.009) and in the VueBoxtrademark parameters FT (P = 0.045) and RT (P = 0.039). Receiver operating characteristic analysis for differential diagnosis of benign and malignant renal tumors showed that AUC for a combination of enhancement degree and presence of a pseudocapsule was greater (AUC = 0.815) than the values for either parameter of enhancement mode alone. Similarly, the AUC for a combination of RT and FT was greater (AUC = 0.798) than the values for RT or FT alone. A comprehensive index obtaining by combining the enhancement-mode and VueBoxtrademark parameters showed the largest AUC (AUC = 0.916) with relatively high accuracy (87.50%), sensitivity (76.50%), and specificity (85.70%). CONCLUSIONS: DCE-US with enhancement mode and quantitative analysis can facilitate preoperative differential diagnosis of benign and malignant renal tumors.


Asunto(s)
Neoplasias Renales , Imagen por Resonancia Magnética , Humanos , Medios de Contraste , Diagnóstico Diferencial , Neoplasias Renales/diagnóstico por imagen , Estudios Retrospectivos , Sensibilidad y Especificidad , Ultrasonografía
9.
Cell Rep ; 41(11): 111831, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36493785

RESUMEN

Since the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, multiple SARS-CoV-2-related viruses have been characterized, including pangolin-origin GD/1/2019 and GX/P2V/2017. Our previous study indicated that both viruses have the potential to infect humans. Here, we find that CB6 (commercial name etesevimab), a COVID-19 therapeutic monoclonal antibody (MAb) developed by our group, efficiently inhibits GD/1/2019 but not GX/P2V/2017. A total of 50 SARS-CoV-2 MAbs divided into seven groups based on their receptor-binding domain (RBD) epitopes, together with the COVID-19 convalescent sera, are systematically screened for their cross-binding and cross-neutralizing properties against GX/P2V/2017. We find that GX/P2V/2017 displays substantial immune difference from SARS-CoV-2. Furthermore, we solve two complex structures of the GX/P2V/2017 RBD with MAbs belonging to RBD-1 and RBD-5, providing a structural basis for their different antigenicity. These results highlight the necessity for broad anti-coronavirus countermeasures and shed light on potential therapeutic targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Pangolines , Glicoproteína de la Espiga del Coronavirus
10.
J Extracell Vesicles ; 11(12): e12288, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450704

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2 , COVID-19/terapia , Prueba de COVID-19 , Inmunidad Adaptativa
11.
Front Chem ; 10: 967158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118321

RESUMEN

A fast quantitative analysis method of soil potassium based on direct-focused laser ablation-laser induced breakdown spectroscopy (direct-focused LA-LIBS) was proposed and tested. A high single-pulse energy laser (200 mJ/pulse) beam was focused on the aerosols near the focus of the 10 kHz fiber laser to generate plasma spectra, and the analytical capability of the direct-focused LA-LIBS system was compared with traditional LIBS system using a high single-pulse energy laser (SP-LIBS). The result showed that for moist soil samples the data stability of the direct-focused LA-LIBS method was significantly improved and the R2 factor of the calibration curve improved from 0.64 to 0.93, the limit of detection improved from 159.2 µg/g to 140.9 µg/g. Three random soil samples from different areas of Beijing suburbs were analyzed by the direct-focused LA-LIBS method, and the results were consistent with AAS. The direct-focused LA-LIBS method proposed is different from the traditional double-pulse technology and laser ablation-assisted technology because it not only does not need carrier gas, but also can overcome the matrix differences better, especially the influence of moisture, which provides a new idea for the rapid detection of nutrient elements in field soils.

12.
J Virol ; 96(17): e0081422, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000849

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted between humans and minks, and some mutations in the spike (S) protein, especially in the receptor-binding domain (RBD), have been identified in mink-derived viruses. Here, we examined binding of the mink angiotensin-converting enzyme 2 (ACE2) receptor to mink-derived and important human-originating variants, and we demonstrated that most of the RBD variants increased the binding affinities to mink ACE2 (mkACE2). Cryo-electron microscopy structures of the mkACE2-RBD Y453F (with a Y-to-F change at position 453) and mkACE2-RBD F486L complexes helped identify the key residues that facilitate changes in mkACE2 binding affinity. Additionally, the data indicated that the Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and human vaccinated sera efficiently prevented infection of human cells by pseudoviruses expressing Y453F, F486L, or N501T RBD. Our findings provide an important molecular mechanism for the rapid adaptation of SARS-CoV-2 in minks and highlight the potential influence of the main mink-originating variants for humans. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a broad range of hosts. Mink-derived SARS-CoV-2 can transmit back to humans. There is an urgent need to understand the binding mechanism of mink-derived SARS-CoV-2 variants to mink receptor. In this study, we identified all mutations in the receptor-binding domain (RBD) of spike (S) protein from mink-derived SARS-CoV-2, and we demonstrated the enhanced binding affinity of mink angiotensin-converting enzyme 2 (ACE2) to most of the mink-derived RBD variants as well as important human-originating RBD variants. Cryo-electron microscopy structures revealed that the Y453F and F486L mutations enhanced the binding forces in the interaction interface. In addition, Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and the SARS-CoV-2 pseudoviruses with Y453F, F486L, or N501T mutations were neutralized by human vaccinated sera. Therefore, our results provide valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19/veterinaria , Visón , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Monoclonales/metabolismo , COVID-19/virología , Microscopía por Crioelectrón , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/genética
13.
Nat Commun ; 13(1): 4958, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002453

RESUMEN

Omicron SARS-CoV-2 is rapidly spreading worldwide. To delineate the impact of emerging mutations on spike's properties, we performed systematic structural analyses on apo Omicron spike and its complexes with human ACE2 or S309 neutralizing antibody (NAb) by cryo-EM. The Omicron spike preferentially adopts the one-RBD-up conformation both before and after ACE2 binding, which is in sharp contrast to the orchestrated conformational changes to create more up-RBDs upon ACE2 binding as observed in the prototype and other four variants of concern (VOCs). Furthermore, we found that S371L, S373P and S375F substitutions enhance the stability of the one-RBD-up conformation to prevent exposing more up-RBDs triggered by ACE2 binding. The increased stability of the one-RBD-up conformation restricts the accessibility of S304 NAb, which targets a cryptic epitope in the closed conformation, thus facilitating the immune evasion by Omicron. These results expand our understanding of Omicron spike's conformation, receptor binding and antibody evasion mechanism.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Humanos , Mutación , Receptores Virales/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
14.
Immunity ; 55(8): 1501-1514.e3, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35777362

RESUMEN

SARS-CoV-2 Omicron variant has presented significant challenges to current antibodies and vaccines. Herein, we systematically compared the efficacy of 50 human monoclonal antibodies (mAbs), covering the seven identified epitope classes of the SARS-CoV-2 RBD, against Omicron sub-variants BA.1, BA.1.1, BA.2, and BA.3. Binding and pseudovirus-based neutralizing assays revealed that 37 of the 50 mAbs lost neutralizing activities, whereas the others displayed variably decreased activities against the four Omicron sub-variants. BA.2 was found to be more sensitive to RBD-5 antibodies than the other sub-variants. Furthermore, a quaternary complex structure of BA.1 RBD with three mAbs showing different neutralizing potencies against Omicron provided a basis for understanding the immune evasion of Omicron sub-variants and revealed the lack of G446S mutation accounting for the sensitivity of BA.2 to RBD-5 mAbs. Our results may guide the application of the available mAbs and facilitate the development of universal therapeutic antibodies and vaccines against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Glicoproteínas de Membrana , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral
15.
Cell ; 185(16): 2952-2960.e10, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35809570

RESUMEN

The currently circulating Omicron sub-variants are the SARS-CoV-2 strains with the highest number of known mutations. Herein, we found that human angiotensin-converting enzyme 2 (hACE2) binding affinity to the receptor-binding domains (RBDs) of the four early Omicron sub-variants (BA.1, BA.1.1, BA.2, and BA.3) follows the order BA.1.1 > BA.2 > BA.3 ≈ BA.1. The complex structures of hACE2 with RBDs of BA.1.1, BA.2, and BA.3 reveal that the higher hACE2 binding affinity of BA.2 than BA.1 is related to the absence of the G496S mutation in BA.2. The R346K mutation in BA.1.1 majorly affects the interaction network in the BA.1.1 RBD/hACE2 interface through long-range alterations and contributes to the higher hACE2 affinity of the BA.1.1 RBD than the BA.1 RBD. These results reveal the structural basis for the distinct hACE2 binding patterns among BA.1.1, BA.2, and BA.3 RBDs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , COVID-19 , Enzima Convertidora de Angiotensina 2/metabolismo , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genética
17.
Cell Discov ; 8(1): 65, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821014

RESUMEN

The Omicron variant of SARS-CoV-2 carries multiple unusual mutations, particularly in the receptor-binding domain (RBD) of the spike (S) protein. Moreover, host-adapting mutations, such as residues 493, 498, and 501, were also observed in the Omicron RBD, which indicates that it is necessary to evaluate the interspecies transmission risk of the Omicron variant. Herein, we evaluated the interspecies recognition of the Omicron BA.1 and Delta RBDs by 27 ACE2 orthologs, including humans. We found that Omicron BA.1 expanded its receptor binding spectra to palm-civet, rodents, more bats (least horseshoe bat and greater horseshoe bat) and lesser hedgehog tenrec. Additionally, we determined the cryo-electron microscopy (cryo-EM) structure of the Omicron BA.1 S protein complexed with mouse ACE2 (mACE2) and the crystal structure of Omicron RBD complexed with palm-civet ACE2 (cvACE2). Several key residues for the host range have been identified. These results suggest that surveillance should be enhanced on the Omicron variant for its broader-species receptor binding to prevent spillover and expansion of reservoir hosts for a prolonged pandemic.

18.
Cardiovasc Pathol ; 60: 107451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35835430

RESUMEN

Primary sarcoma of the aorta is extremely rare. We herein report a case of DICER1-associated sarcoma originating from the aortic arch. A 45-year-old male was admitted to the hospital with a cold left hand and a weakened radial artery pulse on the left side. Computed tomography of the chest showed multiple penetrating ulcers with tumor-like ectasia at the aortic arch, diagnosed as a pseudoaneurysm. Histopathological analysis of the mass revealed a biphasic neoplasm composed of epithelial and mesenchymal components and a transition zone between the epithelial and mesenchymal cells, which supports the diagnosis of a biphasic sarcoma rather than carcinosarcoma. The differentiated cells of soft tissue showed strong and diffuse positivity for TLE-1, Bcl-2, and CD99; the nested epithelial cells were focally positive for CK-pan but negative for EMA, membranous localization of ß-catenin. This case showed a unique pattern of SS18-break-apart probe, with loss of the green signal (approximately 33%) by fluorescence in situ hybridization (FISH). Fusion gene profiling using whole transcriptome RNA sequencing (RNA-seq) indicated that this case was negative for common fusion genes including SS18. Next-generation sequencing (NGS) revealed somatic mutations in DICER1. Taken together, this case was diagnosed as a DICER-associated biphasic sarcoma of the aortic arch. The patient died four months after aorta replacement therapy without radiotherapy and chemotherapy.


Asunto(s)
Sarcoma Sinovial , Sarcoma , Neoplasias de los Tejidos Blandos , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/patología , Biomarcadores de Tumor/genética , ARN Helicasas DEAD-box/genética , Humanos , Hibridación Fluorescente in Situ , Masculino , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Represoras/genética , Ribonucleasa III/genética , Sarcoma/genética , Sarcoma Sinovial/genética , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , beta Catenina
19.
Indian J Pathol Microbiol ; 65(Supplement): S24-S32, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35562131

RESUMEN

Glioblastoma is the most common malignant central nervous system (CNS) tumor in adults. Acute common clinical symptoms include headache, seizure, behavior changes, focal neurological deficits, and signs of increased intracranial pressure. The classic MRI finding of glioblastoma is an irregularly shaped, rim-enhancing or ring-enhancing lesion with a central dark area of necrosis. This constellation of features correlates with microscopic findings of tumor necrosis and microvascular proliferation. Besides these common features, several well-recognized histological subtypes include giant cell glioblastoma, granular cell glioblastoma, gliosarcoma, glioblastoma with a primitive neuronal component, small cell glioblastoma, and epithelioid glioblastoma. While glioblastoma was historically classified as isocitrate dehydrogenase (IDH)-wildtype and IDH-mutant groups, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) and the fifth edition of the WHO Classification of Tumors of the Central Nervous System clearly updated the nomenclature to reflect glioblastoma to be compatible with wildtype IDH status only. Therefore, glioblastoma is now defined as "a diffuse, astrocytic glioma that is IDH-wildtype and H3-wildtype and has one or more of the following histological or genetic features: microvascular proliferation, necrosis, Telomerase reverse transcriptase promoter mutation, Epidermal growth factor receptor gene amplification, +7/-10 chromosome copy-number changes (CNS WHO grade 4)."


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioblastoma , Adulto , Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/diagnóstico , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Necrosis , Organización Mundial de la Salud
20.
Cell ; 185(4): 630-640.e10, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35093192

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues worldwide with many variants arising, some of which are variants of concern (VOCs). A recent VOC, omicron (B.1.1.529), which obtains a large number of mutations in the receptor-binding domain (RBD) of the spike protein, has risen to intense scientific and public attention. Here, we studied the binding properties between the human receptor ACE2 (hACE2) and the VOC RBDs and resolved the crystal and cryoelectron microscopy structures of the omicron RBD-hACE2 complex as well as the crystal structure of the delta RBD-hACE2 complex. We found that, unlike alpha, beta, and gamma, omicron RBD binds to hACE2 at a similar affinity to that of the prototype RBD, which might be due to compensation of multiple mutations for both immune escape and transmissibility. The complex structures of omicron RBD-hACE2 and delta RBD-hACE2 reveal the structural basis of how RBD-specific mutations bind to hACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Receptores Virales/química , SARS-CoV-2/química , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Mutación/genética , Filogenia , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Electricidad Estática , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...