Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1131605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089566

RESUMEN

Polyporus umbellatus is an edible and medicinal mushroom with the capacity to produce sclerotia. However, the mechanism of P. umbellatus sclerotia formation is unclear. CRZ1 is a C2H2 family transcription factor involved in the Ca2+-calcineurin signaling pathway, which has the function of regulating sclerotia formation, maintaining ion homeostasis, and responding to stress. In this study, we identified 28 C2H2 transcription factors in P. umbellatus genome, 13 of which are differentially expressed between mycelium and sclerotia, including PuCRZ1. Combining DNA affinity purification and sequencing (DAP-seq) and quantitative real-time PCR (qRT-PCR), three genes (PuG10, PuG11, PuG12) were identified as putative PuCRZ1 target genes containing a putative binding motif (GTGGCG) within their promoter. Yeast single hybridization (Y1H) and EMSA further confirmed that PuCRZ1 can bind to the promoter region of PuG10, PuG11, and PuG12. PuCRZ1 gene could reduce the sensitivity of NaCl in yeast cells. Furthermore, overexpression of the PuCRZ1 target gene, especially the FVLY domain containing gene PuG11, could improve the mycelia growth rate and mannitol tolerance in P. umbellatus. These results demonstrate that PuCRZ1 in the Ca2+-calcineurin signaling pathway plays an important role in mycelia growth, as well as osmotic stress tolerance.

2.
Front Microbiol ; 13: 947687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935222

RESUMEN

Polyporus umbellatus is a well-known edible and medicinal mushroom, and some bacteria isolated from mushroom sclerotia may have beneficial effects on their host. These mushroom growth-promoting bacteria (MGPBs) are of great significance in the mushroom production. In this work, we aimed to isolate and identify MGPBs from P. umbellatus sclerotia. Using the agar plate dilution method, strain CACMS001 was isolated from P. umbellatus sclerotia. The genome of CACMS001 was sequenced using PacBio platform, and the phylogenomic analysis indicated that CACMS001 could not be assigned to known Rhizobium species. In co-culture experiments, CACMS001 increased the mycelial growth of P. umbellatus and Armillaria gallica and increased xylanase activity in A. gallica. Comparative genomic analysis showed that CACMS001 lost almost all nitrogen fixation genes but specially acquired one redox cofactor cluster with pqqE, pqqD, pqqC, and pqqB involved in the synthesis of pyrroloquinoline quinone, a peptide-derived redox participating in phosphate solubilization activity. Strain CACMS001 has the capacity to solubilize phosphate using Pikovskaya medium, and phnA and phoU involved in this process in CACMS001 were revealed by quantitative real-time PCR. CACMS001 is a new potential Rhizobium species and is the first identified MGPB belonging to Rhizobium. This novel bacterium would play a vital part in P. umbellatus, A. gallica, and other mushroom cultivation.

3.
Front Plant Sci ; 13: 954160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923885

RESUMEN

The microbes in the rhizosphere (or mycorrhizosphere) could promote plant growth, however, it is unclear whether mycorrhizosphere microbes could fight multiple fungal pathogens. In this study, twenty-one bacterial strains distributed in 6 genera, including 5 Pseudomonas strains, were isolated from mycorrhizal samples of Polyporus umbellatus that rely on other fungi during their life cycles. Further screening and pot experiments showed that the Pseudomonas strain ZL8 not only inhibited the growth of phytopathogenic fungi, but also promoted the growth of Salvia miltiorrhiza through inhibiting its wilting. In addition, strain ZL8 was found to have the ability to dissolve phosphate, produce IAA and siderophore. Nineteen compounds were identified from the fermentation broth of strain ZL8, of which 2,4-diacetylphloroglucinol (DAPG) had a significant inhibitory effect on phytopathogenic fungi with a minimum inhibitory concentration of 3.12-25 µg/mL. Molecular docking predicted that DAPG could bind to myosin I at two unique sites, which may be responsible to the inhibition of fungal growth. The evaluation results showed that strain ZL8 can be used to develop a dual-purpose biocontrol agents and biofertilizer. These results also provide new insights into the discovery and utilization of new resources for biocontrol agents and biolfertilizers.

4.
Front Microbiol ; 13: 842893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401480

RESUMEN

Gastrodia elata is an entirely heterotrophic plant, the growth of which is completely reliant on Armillaria gallica, an orchid mycorrhizal fungus. To avoid damaging ecosystems, G. elata cultivation is shifting from woodland to farmland. However, whether the microbial community structure remains stable during this conversation is unknown. Here, we cultivated G. elata in woodland or farmland and found that woodland-cultivated G. elata produced a greater yield and larger tuber size. The relative abundance of Rahnella was 22.84- and 122.25-fold higher in woodland- and farmland-cultivated soil samples, respectively, than that in uncultivated soil samples. To investigate how Rahnella impacts the growth of G. elata and establishes symbiosis with Armillaria gallica, three Rahnella spp. strains (HPDA25, SBD3, and SBD11) were isolated from mycorrhizosphere soil samples. It was found that these strains, especially HPDA25, promoted the growth of A. gallica. Ultra-performance liquid chromatography coupled to a triple quadrupole mass spectrometry analysis detected the indole-3-acetic acid with 16.24 ng/ml in HPDA25 fermentation solution. Co-culturing with the strain HPDA25 or exogenous indole-3-acetic acid increased the branching and fresh weight of rhizomorphs and the growth rate and extracellular laccase activity of A. gallica, compared with A. gallica cultured alone. The results of RNA-seq and quantitative real-time polymerase chain reaction analysis showed that co-culturing A. gallica with HPDA25 increased the expression level of the genes including hydrophobin, SUR7/PalI family, and pectin methylesterase, whereas decreased the expression levels of glycolysis-related genes. Furthermore, co-culturing with the strain HPDA25, A. gallica promotes the growth of G. elata and enhances the tuber size of G. elata. These results provide new insights into an orchid mycorrhizal symbiosis and the cultivation of G. elata.

5.
Plant Dis ; 106(5): 1434-1445, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34813711

RESUMEN

Potato is an important crop in Shanxi province, located in north-central China. In 2019 to 2020, 319 potato leaf samples were collected from eight locations distributed in three major potato production areas in Shanxi. BioChip testing revealed the presence of several potato viruses, of which Potato virus Y (PVY) was the most common, reaching an incidence of 87.8% of all symptomatic samples. Immunocaptured multiplex reverse transcription (RT) PCR was used to identify strains for all 280 PVY-positive samples, unveiling 242 samples infected with a single strain of PVY (86.4%) and 38 (13.6%) with a mixed infection. Of samples with a single-strain infection, PVY-SYR-II accounted for 102 (42.1%), followed by PVYN-Wi (33, 13.6%), PVY-SYR-I (28, 11.6%), 261-4 (22, 9.1%), PVYNTNa (20, 8.3%), PVYNTNb (19, 7.9%), and PVY-SYR-III (18, 7.4%). Seven isolates representing different recombinants were selected for whole genome sequencing. Phylogenetic and recombination analyses confirmed the RT-PCR-based strain typing for all seven strains of PVY found in Shanxi. SXKL-12 is the first SYR-III strain from potato reported from China. However, unlike that in other known SYR-III isolates, the region positioned from 1,764 to 1,902 nt in SXKL-12 shared the highest sequence identity of 82.2% with an uncharacterized PVY isolate, JL-23, from China. Interestingly, PVYN-Wi isolate SXZY-40 also possessed a more divergent sequence for the region positioned from 6,156 to 6,276 nt than other N-Wi isolates known to date, sharing the highest identity of 86.6% with an uncharacterized Chinese PVY isolate, JL-11. Pathogenicity analysis of dominant strains PVY-SYR-II and PVYN-Wi in six local popular potato cultivars revealed that 'Kexin 13', 'Helan 15', and 'Jizhangshu 12' were susceptible to these two strains, with mild mottling or mosaic symptom expression, and three cultivars, 'Jinshu 16', 'Qingshu 9', and 'Xisen 6', were fully resistant.


Asunto(s)
Potyvirus , Solanum tuberosum , Filogenia , Enfermedades de las Plantas , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...