Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Methods Biomech Biomed Engin ; 27(6): 727-735, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37078775

RESUMEN

Clinically, circle of Willis (CoW) is prone to anomaly and is also the predominant incidence site of intracranial aneurysms (IAs). This study aims to investigate the hemodynamic characteristics of CoW anomaly, and ascertain the mechanism of IAs initiation from the perspective of hemodynamics. Thus, the flow of IAs and pre-IAs were analyzed for one type of cerebral artery anomaly, that is, anterior cerebral artery A1 segment (ACA-A1) unilateral absence. Three patient geometrical models with IAs were selected from Emory University Open Source Data Center. IAs were virtually removed from the geometrical models to simulate the pre-IAs geometry. For calculation methods, a one-dimensional (1-D) solver and a three-dimensional (3-D) solver were combined to obtain the hemodynamic characteristics. The numerical simulation revealed that the average flow of Anterior Communicating Artery (ACoA) is almost zero when CoW is complete. In contrast, ACoA flow increases significantly in the case of ACA-A1 unilateral absence. For per-IAs geometry, the jet flow is found at the bifurcation between contralateral ACA-A1 and ACoA, which exhibits characteristics of high Wall Shear Stress (WSS) and high wall pressure in the impact region. It triggers the initiation of IAs from the perspective of hemodynamics. The vascular anomaly that leads to jet flow should be considered as a risk factor for IAs initiation.


Asunto(s)
Círculo Arterial Cerebral , Aneurisma Intracraneal , Humanos , Adulto , Niño , Hemodinámica , Factores de Riesgo , Estrés Mecánico
2.
World Neurosurg ; 181: e918-e924, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949299

RESUMEN

OBJECTIVE: Multiple intracranial aneurysms (MIA) are prevalent. This study conducted hemodynamic calculations on MIA to analyze the effects of occlusion of the internal carotid artery (ICA) and middle cerebral artery (MCA) aneurysms on the hemodynamics of other arteries, as well as the issue of the treatment order for these aneurysms. METHODS: The models of 9 patients with MIA were selected for the study. A computational fluid dynamics model combining 1-dimension and 3-dimension was used to obtain the vascular flow pattern and wall pressure. RESULTS: There was increased pressure at the MCA and anterior cerebral artery (ACA) after occlusion of the aneurysm at the ICA. However, the pressure at the ICA has hardly changed after the aneurysm occlusion at the MCA. Occlusion of the aneurysm of different sizes at the MCA had almost no impact on the pressure at the ICA and ACA. For small aneurysm, the pressure of the ACA and MCA increases with decreasing size of the aneurysm at the ICA. After occlusion of a large aneurysm at the ICA, the impact on the pressure of the ACA and MCA is almost the same as after occlusion of a medium-sized aneurysm. CONCLUSIONS: If the treatment order of ICA and MCA aneurysms cannot be determined based on patient factors and aneurysm characteristics, the MCA aneurysm should be treated as a priority.


Asunto(s)
Aneurisma Intracraneal , Humanos , Hidrodinámica , Arteria Cerebral Anterior , Hemodinámica , Arteria Carótida Interna
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA