Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Antimicrob Agents ; : 107265, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964622

RESUMEN

More and more ceftazidime-avibactam resistant KPC-producing K. pneumoniae have been reported with its widespread use, and the detection rate of KPC variants has increased dramatically. However, the evolutionary mechanism and fitness effects during KPC mutation remained unknown. Here, we report the complex in vivo evolutionary trajectories of two novel KPC variants, KPC-155 (L169P/GT242A) and KPC-185 (D179Y/GT242A), from Klebsiella pneumoniae in the same patient. The novel variants were shown to confer ceftazidime-avibactam resistance but restore carbapenem susceptibility based on the results of plasmid transformation assays, cloning experiments, and enzyme kinetic measurements. In vitro competition experiments highlighted the adaptive advantage conferred by strains carrying these KPC variants, which could lead to the rapid spread of these ceftazidime-avibactam resistant strains. The growth curve indicated that blaKPC-185 had better growth conditions at lower avibactam concentration compared to blaKPC-155, which was consistent with ceftazidime-avibactam use in vivo. In addition, replicative transposition of the IS26-flanked translocatable unit (IS26-ISKpn6-blaKPC-ISKpn27-IS26) also contributes to the blaKPC amplification and formation of two copies (blaKPC-2 and blaKPC-185), conferring both carbapenem and ceftazidime-avibactam resistance. However, strains with double copies showed reduced competitive advantage and configuration stability. The comparative plasmid analysis of IS26 group (IS26-blaKPC-IS26) and Tn1721 group (Tn1721-blaKPC-IS26) revealed that IS26-insertion could influence the distribution of resistance genes and ability of self-conjugation. The dynamic changes in blaKPC configuration highlight the need for consistent monitoring including antimicrobial susceptibility testing and determination of blaKPC subtypes-during clinical treatment, especially when ceftazidime-avibactam is administered.

2.
Int J Antimicrob Agents ; 64(2): 107228, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823494

RESUMEN

The rapid dissemination of carbapenem-resistant Enterobacterales (CRE) especially carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a great threat to global public health. Ceftazidime-avibactam, a novel ß-lactam/ß-lactamase inhibitor combination, has been widely used due to its excellent antibacterial activity against KPC-producing K. pneumoniae. However, several resistance mechanisms have been reported since its use. Here, we conducted a series of in vitro experiments to reveal and demonstrate the dynamic evolution of ceftazidime-avibactam resistance including interspecies IncX3_NDM-5 plasmid transfer between Enterobacter cloacae and K. pneumoniae and blaKPC mutation from blaKPC-2 to blaKPC-33. Through the analysis of conjugation frequency and fitness cost, the IncX3_NDM-5 plasmid in this study showed strong transmissibility and stability in E. coli EC600 and clinical strain K. pneumoniae 5298 as recipient strain. With increasing ceftazidime-avibactam concentration, the conjugation frequency remained at 10-3-10-5, while the mutation frequency of K. pneumoniae 5298 was 10-6-10-8 at the same concentration. Further plasmid analysis (the IncX3_NDM plasmid from this study and other 658 plasmids from the NCBI database) revealed the diverse origin and genetic structure of blaNDM-5 carrying plasmids. E. coli (42.9%), China (43.9%), IncX3 (66.6%) are the most common strains, regions, and Inc types respectively. By analysing of genetic environment detected in IncX3 plasmids, the dominant structures (168/258, 65.1%) were identified: ISKox3-IS26-blaNDM-5-IS5-ISAba125-Tn3000-Tn3. In additon, several structural variations were found in the core gene structure. In conclusion, the high fitness and transmissibility of the IncX3_NDM-5 plasmids were noteworthy. More importantly, the diverse ceftazidime-avibactam resistance mechanisms including blaNDM-5 tranfer and blaKPC-2 mutation highlighted the importance of the continuous monitoring of antimicrobial susceptibility and carbapenemases subtype during ceftazidime-avibactam treatment.

3.
Emerg Microbes Infect ; 13(1): 2361007, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38801099

RESUMEN

Ceftazidime-avibactam resistance attributable to the blaKPC-2 gene mutation is increasingly documented in clinical settings. In this study, we characterized the mechanisms leading to the development of ceftazidime-avibactam resistance in ST11-K47 hypervirulent Klebsiella pneumoniae that harboured the blaKPC-135 gene. This strain possessed fimbriae and biofilm, demonstrating pathogenicity. Compared with the wild-type KPC-2 carbapenemase, the novel KPC-135 enzyme exhibited a deletion of Glu168 and Leu169 and a 15-amino acid tandem repeat between Val262 and Ala276. The blaKPC-135 gene was located within the Tn6296 transposon truncated by IS26 and carried on an IncFII/IncR-type plasmid. Compared to the blaKPC-2-positive cloned strain, only the MIC of ceftazidime increased against blaKPC-135-positive K. pneumoniae and wasn't inhibited by avibactam (MIC 32 µg/mL), while clavulanic acid and vaborbactam demonstrated some inhibition. Kinetic parameters revealed that KPC-135 exhibited a lower Km and kcat/Km with ceftazidime and carbapenems, and a higher (∼26-fold) 50% inhibitory concentration with avibactam compared to KPC-2. The KPC-135 enzyme exerted a detrimental effect on fitness relative to the wild-type strain. Furthermore, this strain possessed hypervirulent determinants, which included the IncHI1B/FIB plasmid with rmpA2 and expression of type 1 and 3 fimbriae. In conclusion, we reported a novel KPC variant, KPC-135, in a clinical ST11-K47 hypervirulent K. pneumoniae strain, which conferred ceftazidime-avibactam resistance, possibly through increased ceftazidime affinity and decreased avibactam susceptibility. This strain simultaneously harboured resistance and virulence genes, posing an elevated challenge in clinical treatment.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Proteínas Bacterianas , Ceftazidima , Combinación de Medicamentos , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Ceftazidima/farmacología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/enzimología , Compuestos de Azabiciclo/farmacología , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Virulencia , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Animales
4.
Emerg Microbes Infect ; 13(1): 2356146, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38743401

RESUMEN

Ceftazidime-avibactam (CZA) is employed for the treatment of infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP). Resistance to CZA is frequently linked to point mutations in the blaKPC. We conducted in vitro simulations of in vivo blaKPC mutations using CZA. Four pre-therapy KPC-KP isolates (K1, K2, K3, and K4) were evaluated, all initially exhibited susceptibility to CZA and produced KPC-2. The crucial distinction was that following CZA treatment, the blaKPC-2 mutated in K1, K2, and K3, rendering them resistant to CZA, while K4 achieved microbiological clearance, and blaKPC-2 remained unaltered. The induction assay identified various blaKPC-2 variants, including blaKPC-25, blaKPC-127, blaKPC-100, blaKPC-128, blaKPC-137, blaKPC-138, blaKPC-144 and blaKPC-180. Our findings suggest that the resistance of KPC-KP to CZA primarily results from the emergence of KPC variants, complemented by increased blaKPC expression. A close correlation exists between avibactam concentration and the rate of increased CZA minimum Inhibitory concentration, as well as blaKPC mutation. Inadequate avibactam concentration is more likely to induce resistance in strains against CZA, there is also a higher likelihood of mutation in the blaKPC-2 and the optimal avibactam ratio remains to be determined. Simultaneously, we selected a blaKPC-33-producing K. pneumoniae strain (mutated from blaKPC-2) and induced it with imipenem and meropenem, respectively. The blaKPC-2 was detected during the process, indicating that the mutation is reversible. Clinical use of carbapenems to treat KPC variant strains increases the risk of infection, as the gene can mutate back to blaKPC-2, rendering the strain even more cross-resistant to carbapenems and CZA.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Proteínas Bacterianas , Ceftazidima , Combinación de Medicamentos , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Ceftazidima/farmacología , Compuestos de Azabiciclo/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Mutación , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Fenotipo , Hidrólisis , Cinética
5.
J Clin Microbiol ; : e0015424, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809033

RESUMEN

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.

6.
Nat Microbiol ; 9(3): 814-829, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424289

RESUMEN

Epidemiological knowledge of circulating carbapenem-resistant Klebsiella pneumoniae (CRKP) is needed to develop effective strategies against this public health threat. Here we present a longitudinal analysis of 1,017 CRKP isolates recovered from patients from 40 hospitals across China between 2016 and 2020. Virulence gene and capsule typing revealed expansion of CRKP capsule type KL64 (59.5%) alongside decreases in KL47 prevalence. Hypervirulent CRKP increased in prevalence from 28.2% in 2016 to 45.7% in 2020. Phylogenetic and spatiotemporal analysis revealed Beijing and Shanghai as transmission hubs accounting for differential geographical prevalence of KL47 and KL64 strains across China. Moderate frequency capsule or O-antigen loss was also detected among isolates. Non-capsular CRKP were more susceptible to phagocytosis, attenuated during mouse infections, but showed increased serum resistance and biofilm formation. These findings give insight into CRKP serotype prevalence and dynamics, revealing the importance of monitoring serotype shifts for the future development of immunological strategies against CRKP infections.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Factores de Virulencia , Humanos , Animales , Ratones , China/epidemiología , Factores de Virulencia/genética , Klebsiella pneumoniae/genética , Filogenia , Farmacorresistencia Microbiana , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología
7.
Clin Microbiol Rev ; 36(4): e0000823, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37937997

RESUMEN

Klebsiella pneumoniae carbapenemase (KPC) variants, which refer to the substitution, insertion, or deletion of amino acid sequence compared to wild blaKPC type, have reduced utility of ceftazidime-avibactam (CZA), a pioneer antimicrobial agent in treating carbapenem-resistant Enterobacterales infections. So far, more than 150 blaKPC variants have been reported worldwide, and most of the new variants were discovered in the past 3 years, which calls for public alarm. The KPC variant protein enhances the affinity to ceftazidime and weakens the affinity to avibactam by changing the KPC structure, thereby mediating bacterial resistance to CZA. At present, there are still no guidelines or expert consensus to make recommendations for the diagnosis and treatment of infections caused by KPC variants. In addition, meropenem-vaborbactam, imipenem-relebactam, and other new ß-lactam-ß-lactamase inhibitor combinations have little discussion on KPC variants. This review aims to discuss the clinical characteristics, risk factors, epidemiological characteristics, antimicrobial susceptibility profiles, methods for detecting blaKPC variants, treatment options, and future perspectives of blaKPC variants worldwide to alert this new great public health threat.


Asunto(s)
Klebsiella pneumoniae , Salud Pública , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Inhibidores de beta-Lactamasas/farmacología , Combinación de Medicamentos
8.
Microbiol Spectr ; 11(6): e0535522, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855593

RESUMEN

IMPORTANCE: Carbapenem-resistant Acinetobacter baumannii is a major global health concern due to its high prevalence and limited treatment options. Cefiderocol is the only novel Food and Drug Administration (FDA)-approved ß-lactam agent for the salvage treatment of carbapenem-resistant A. baumannii infection. Currently, a commercial automated susceptibility testing panel of cefiderocol is unavailable. Both the preparation of iron-depleted cation-adjusted Mueller-Hinton broth and the performance of broth microdilution are cumbersome in routine microbiology laboratories. A disk diffusion method is convenient for cefiderocol antimicrobial susceptibility testing, but limited data are available specifically for A. baumannii clinical isolates. Moreover, the Clinical and Laboratory Standards Institute published revisions to the A. baumannii cefiderocol disk diffusion breakpoints in 2022. Hence, we evaluated the performance of cefiderocol disk diffusion compared with the reference BMD against A. baumannii clinical isolates, especially those with cefiderocol zone diameters ≤ 14 mm.


Asunto(s)
Acinetobacter baumannii , Cefiderocol , Antibacterianos/farmacología , Carbapenémicos , Pruebas de Sensibilidad Microbiana
9.
J Med Microbiol ; 72(8)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37552058

RESUMEN

Introduction. Tigecycline is one of the important antibiotics available for treating infection caused by multiple-drug resistant pathogens. However, the conventional AST methods which are commonly used in clinical microbiology laboratories usually lead to false intermediate or resistant results in testing tigecycline susceptibility, and further mislead clinical antimicrobial therapies.Hypothesis. The modified Kirby-Bauer disc diffusion (mKB) method was performed based on the traditional standard Kirby-Bauer disc diffusion (sKB) method.Aim. To evaluate a modified Kirby-Bauer disc diffusion (mKB) method for tigecycline susceptibility testing, for the purpose of providing accurate tigecycline susceptibility results in clinical practice.Methodology. A total of 4271 nonduplicate clinical strains were isolated from 37 hospitals across China to perform the mKB method, standard Kirby-Bauer disc diffusion (sKB) method, comparing with the reference broth microdilution (BMD) according to the CLSI. Parameters of categorical agreement (CA), minor errors (mE), major errors (ME), and very major errors (VME) were used in this methodological evaluation research.Results. BMD testing showed that 91.3-98.9 % of the A. baumannii, K. pneumoniae, E. coli, E. cloacae, S. marcescens, and C. freundii strains were susceptible, while 0-3.1% strains were resistant to tigecycline. When testing A. baumannii, mKB demonstrated higher CA than sKB (90.6 % vs 44.8 %) compared to reference BMD. The mE (9.0 % vs 45.2 %), ME (0.5 % vs 10.6 %) and VME (both 0 %) all satisfied the acceptability criteria. mKB also showed higher CA (87.2 % vs 52.0 %) than sKB in comparison with BMD when testing Enterobacterales (mainly K. pneumonia). The ME (0.45 % vs 8.1 %) and VME (both 0 %) but not mE (12.4 % vs 40.4 %) met the acceptability criteria.Conclusion. The mKB method can test bacterial susceptibility to tigecycline more accurately than sKB. For the tigecycline-intermediate or -resistant strains by sKB method, BMD or mKB method should be used to verify the results and report reliable tigecycline susceptibility results.


Asunto(s)
Antibacterianos , Escherichia coli , Tigeciclina/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Klebsiella pneumoniae
10.
Microbiol Spectr ; 11(3): e0386322, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102869

RESUMEN

OXA-232 carbapenemase is becoming a threat in China due to its high prevalence, mortality, and limited treatment options. However, little information is available on the impact of OXA-232-producing Klebsiella pneumoniae in China. This study aims to characterize the clonal relationships, the genetic mechanisms of resistance, and the virulence of OXA-232-producing K. pneumoniae isolates in China. We collected 81 OXA-232-producing K. pneumoniae clinical isolates from 2017 to 2021. Antimicrobial susceptibility testing was performed using the broth microdilution method. Capsular types, multilocus sequence types, virulence genes, antimicrobial resistance (AMR) determinants, plasmid replicon types, and single-nucleotide polymorphism (SNP) phylogeny were inferred from whole-genome sequences. OXA-232-producing K. pneumoniae strains were resistant to most antimicrobial agents. These isolates showed partial differences in susceptibility to carbapenems: all strains were resistant to ertapenem, while the resistance rates to imipenem and meropenem were 67.9% and 97.5%, respectively. Sequencing and capsular diversity analysis of the 81 K. pneumoniae isolates revealed 3 sequence types (ST15, ST231, and one novel ST [ST-V]), 2 K-locus types (KL112 and KL51), and 2 O-locus types (O2V1 and O2V2). The predominant plasmid replicon types associated with the OXA-232 and rmtF genes were ColKP3 (100%) and IncFIB-like (100%). Our study summarized the genetic characteristics of OXA-232-producing K. pneumoniae circulating in China. The results demonstrate the practical applicability of genomic surveillance and its utility in providing methods to prevent transmission. It alerts us to the urgent need for longitudinal surveillance of these transmissible lineages. IMPORTANCE In recent years, the detection rate of carbapenem-resistant K. pneumoniae has increased and represents a major threat to clinical anti-infective therapy. Compared with KPC-type carbapenemases and NDM-type metallo-ß-lactamases, OXA-48 family carbapenemases are another important resistance mechanism mediating bacterial resistance to carbapenems. In this study, we investigated the molecular characteristics of OXA-232 carbapenemase-producing K. pneumoniae isolated from several hospitals to clarify the epidemiological dissemination characteristics of such drug-resistant strains in China.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/microbiología , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Meropenem , Plásmidos/genética , Genómica , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
11.
J Antimicrob Chemother ; 78(4): 1055-1058, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36849586

RESUMEN

OBJECTIVES: To set the tentative epidemiological cut-off values (TECOFFs) of contezolid for Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae and Streptococcus agalactiae based on the distributions of inhibition zone diameters and MICs. METHODS: A total of 1358 non-duplicate clinical isolates of Gram-positive bacteria were collected from the patients across China from 2017 to 2020. The isolates were tested for susceptibility to contezolid and the comparator linezolid by broth microdilution and disc diffusion methods in three microbiology laboratories. The zone diameters and MICs of linezolid WT strains were used to set the WT TECOFFs of contezolid by normalized resistance interpretation calculations. RESULTS: Contezolid showed an aggregate MIC range from 0.03 to 8 mg/L and MIC90 value of 1-2 mg/L against all of the Gram-positive bacterial strains tested. The TECOFF of contezolid based on MIC distributions was 4 mg/L for both S. aureus and Enterococcus species, and 2 mg/L for S. pneumoniae and S. agalactiae. The TECOFF of contezolid based on zone diameter was 24 mm for S. aureus, 18 mm for E. faecalis, 20 mm for E. faecium and S. pneumoniae, and 17 mm for S. agalactiae. CONCLUSIONS: The epidemiological cut-off values of contezolid were set tentatively for selected Gram-positive bacteria using the MIC and zone diameter distributions. These data are helpful for clinical microbiologists and clinicians to interpret the antimicrobial susceptibility results of contezolid.


Asunto(s)
Enterococcus faecium , Staphylococcus aureus , Humanos , Linezolid/farmacología , Enterococcus faecalis , Streptococcus pneumoniae , Streptococcus agalactiae , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
12.
Microbiol Spectr ; : e0272022, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744897

RESUMEN

Ceftazidime-avibactam, a new ß-lactam-ß-lactamase inhibitor combination, is active against multidrug-resistant Enterobacterales and Pseudomonas aeruginosa isolates and has became available for clinical use in China in the latter half of 2019. In this study, we evaluated the performance of the disk diffusion test with ceftazidime-avibactam 10/4-µg and 30/20-µg disks, compared with the reference broth microdilution method, with a collection of 467 Enterobacterales and 182 P. aeruginosa nonduplicate clinical isolates. The results of antimicrobial susceptibility testing indicated that the categorical agreement (CA) of ceftazidime-avibactam 10/4-µg disk testing for all tested Enterobacterales isolates was 99.8%, with 0.5% very major errors (VMEs) and no major error (ME). The CA of ceftazidime-avibactam 10/4-µg disk testing for all tested P. aeruginosa isolates was 87.9%, with 15.5% MEs and no VME. The CA of ceftazidime-avibactam 30/20-µg disk testing for all tested Enterobacterales isolates was 99.4%, with 1.5% VMEs and no ME. The CA of ceftazidime-avibactam 30/20-µg disk testing for all tested P. aeruginosa isolates was 91.8%, with 2.5% VMEs and 9.9% MEs. Overall, ceftazidime-avibactam 10/4-µg disk testing showed superior performance and was more suitable for assessment of the susceptibility of Enterobacterales and P. aeruginosa isolates. IMPORTANCE Multidrug-resistant Enterobacterales and P. aeruginosa strains have become a global public threat, with the emergence and prevalence of plasmid-mediated extended-spectrum ß-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases disseminated worldwide. Ceftazidime-avibactam, which is commercially available, has shown excellent in vitro activity against multidrug-resistant and carbapenem-resistant Enterobacterales and P. aeruginosa isolates. Moreover, ceftazidime-avibactam has shown promise in treating infections caused by multidrug-resistant and carbapenem-resistant isolates. The disk diffusion test for ceftazidime-avibactam is the most common antimicrobial susceptibility testing method in most laboratories in China. The accurate detection of ceftazidime-avibactam susceptibility is of great significance for the rational clinical application of drugs. Here, we evaluated the performance of the ceftazidime-avibactam 10/4-µg and 30/20-µg disk diffusion tests, compared with the reference broth microdilution method, with clinical Enterobacterales and P. aeruginosa isolates.

13.
J Microbiol Methods ; 204: 106646, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481432

RESUMEN

PURPOSE: We aimed to evaluate whether the FilmArray blood culture identification (BCID) panel holds the ability to detect vanM-type vancomycin-resistant enterococci (VRE) clinical isolates effectively. METHODS: Twenty VRE clinical strains, including 10 vanA-type VRE and 10 vanM-type VRE, were collected from patients in five tertiary hospitals, Shanghai, China. By conventional PCR and sequencing, the strains were identified and van genotypes were confirmed. All VRE strains were investigated using the FilmArray BCID panel. All results, including enterococcus assay, vanA/B assay, DNA melting curves and melting temperature (Tm), were recorded. We also compared these results with those obtained via the conventional PCR and sequencing. RESULTS: According to the instructions of the FilmArray BCID panel, the Enterococcus assay is used to identify species and vanA/B assay is used to detect van genes. In all vanA-type VRE, the Enterococcus assay and vanA/B assay were positive. The results correctly showed that the tested strains were VRE. However, in 10 vanM-type VRE, the Enterococcus assay was positive and vanA/B assay were negative. The results mistakenly showed that the tested strains were vancomycin-sensitive enterococci (VSE). In the vanA/B assay, the melting curves of vanM-type VRE were similar to that of vanA-type VRE, but the Tm values were lower. The Tm values were then compared against the expected Tm range for the vanA/B assay. The Tm values of vanM-type VRE fall outside the assay-specific Tm range, resulting in negative reports. Thus, by adjusting the expected Tm range for the Enterococcus assay, the FilmArray BCID panel holds the ability to detect vanM-type VRE. CONCLUSIONS: The vanM-type VRE isolates can be effectively detected by optimizing the expected Tm range for the vanA/B assay.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Humanos , Temperatura , Proteínas Bacterianas/genética , China , Vancomicina , Infecciones por Bacterias Grampositivas/diagnóstico , Ligasas de Carbono-Oxígeno/genética , Antibacterianos , Pruebas de Sensibilidad Microbiana
14.
China CDC Wkly ; 5(52): 1155-1160, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38164466

RESUMEN

What is already known about this topic?: Bacterial resistance surveillance is crucial for monitoring and understanding the trends and spread of drug-resistant bacteria. What is added by this report?: The number of strains collected in 2022 increased compared to 2021. The top five bacteria, including Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, remained largely unchanged. The detection rate of methicillin-resistant strains continued to decrease. Among clinical Enterobacterales isolates, the resistance rate to carbapenems was generally below 13%, except for Klebsiellaspp., which had a resistance range of 20.4% to 21.9%. Most clinical Enterobacterales isolates were highly susceptible to tigecycline, colistin, and polymyxin B, with resistance rates ranging from 0.1% to 12.6%. The detection rate of meropenem-resistant P. aeruginosa and meropenem-resistant Acinetobacter baumannii showed a decreasing trend for the fourth consecutive year. What are the implications for public health practice?: Multidrug-resistant bacteria remain a significant public health challenge in clinical antimicrobial treatment. To effectively address bacterial resistance, it is essential to enhance both bacterial resistance surveillance and the prudent use of antimicrobial agents.

15.
Microbiol Spectr ; 10(6): e0171522, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36326536

RESUMEN

To evaluate the in vitro activities of eravacycline, tedizolid, nemonoxacin, norvancomycin, and ceftaroline against Staphylococcus and Enterococcus species isolates were collected as part of the China Antimicrobial Surveillance Network (CHINET) in 2019 to provide susceptibility data for Staphylococcus spp. and Enterococcus spp. for their future development and application in clinical practice. Antimicrobial susceptibility testing was performed using the CLSI broth microdilution reference method. Eravacycline was highly active against Staphylococcus and Enterococcus species isolates, proved by the MIC50/90: 0.06/0.125, 0.06/0.25, 0.06/0.25, 0.06/0.25, 0.125/0.5, 0.125/0.25, and 0.03/0.06 mg/L for Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), S. epidermidis, S. hominis, S. haemolyticus, Enterococcus faecalis, and E. faecium, respectively. S. aureus isolates tested were fully susceptible to tedizolid. Still, nonsusceptible isolates were found for E. faecalis (72/567 [12.7%]) and E. faecium (12/501 [2.4%]). Norvancomycin at 2 mg/L could inhibit 100% of Staphylococcus spp., while 1 mg/L of ceftaroline could inhibit 78.9% of MRSA and 99.9% of methicillin-susceptible S. aureus (MSSA) isolates. Additionally, nemonoxacin was also active against Staphylococcus and Enterococcus species isolates tested (shown by the following MIC90s and ranges, in milligrams per liter: 2 and ≤0.015 to 8 for MRSA, 0.25 and ≤0.015 to 4 for MSSA, 0.5 and ≤0.015 to 8 for S. epidermidis, and 4 and ≤0.015 to >32 for E. faecalis). In conclusion, both eravacycline and tedizolid were highly active against clinical isolates of Staphylococcus spp. and Enterococcus spp. recently collected across China. Nemonoxacin showed potent activity against Staphylococcus spp. and E. faecalis but limited activity against E. faecium. Norvancomycin and ceftaroline displayed highly potent activity against Staphylococcus spp. IMPORTANCE Antimicrobial resistance has become a severe threat to global public health. According to statistics, nearly 700,000 people die from bacterial infections worldwide (J. O'Neill, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 2014; C. Y. Chin, K. A. Tipton, M. Farokhyfar, E. M. Burd, et al., Nat Microbiol 3:563-569, 2018, https://doi.org/10.1038/s41564-018-0151-5). The number of bacterial infections is expected to climb to 10 million by 2050, showing that bacterial resistance has become a significant problem that cannot be ignored. It is crucial to develop new antimicrobial agents to combat antimicrobial-resistant bacteria. In this study, we evaluated the in vitro activities of eravacycline, tedizolid, nemonoxacin, norvancomycin, and ceftaroline against Staphylococcus spp. and Enterococcus species isolates which were collected as part of CHINET in 2019. We believe that this study can provide susceptibility data for Staphylococcus spp. and Enterococcus spp. for their future development and application in clinical practice.


Asunto(s)
Enterococcus , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Staphylococcus , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Ceftarolina
16.
mSphere ; 7(6): e0048722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36374086

RESUMEN

Ceftazidime-avibactam is an effective antibiotic combination of a ß-lactam and a ß-lactamase inhibitor against Klebsiella pneumoniae-carbapenemase (KPC)-producing Enterobacterales. Despite a relatively low resistance rate, reports of resistance to ceftazidime-avibactam mainly caused by the mutations in KPC have increased in recent years. Here, we report a ceftazidime-avibactam-resistant and carbapenem-susceptible Klebsiella pneumoniae strain carrying a novel KPC variant, KPC-112, which differs from KPC-2 by 4-amino-acid deletions at Ambler positions 166L/167E and 242G/243T. The isolate was identified as K. pneumoniae by a Vitek mass spectrometer (bioMérieux, France). The MICs of antimicrobial agents were determined using broth microdilution susceptibility method. The result showed that the isolate was resistant to ceftazidime-avibactam (MIC = >128 mg/L) but susceptible to imipenem (MIC = 0.5 mg/L), meropenem (MIC = 1 mg/L), and tigecycline (MIC = 2 mg/L). The carbapenemase genes were confirmed by PCR-based sequencing. Plasmid transformation assay showed that the blaKPC-112-positive transformant increased MICs of ceftazidime-avibactam, ceftazidime, and cefepime by at least 256-fold, 128-fold, and 128-fold, respectively, compared with the recipient Escherichia coli DH5α. According to the whole-genome sequencing analysis, many common resistance genes were identified, including blaKPC-112, blaOXA-1, blaCTX-M-15, blaTEM-1B, blaSHV-28, aac(6')Ib-cr, aac(3)-IId, qnrS1, catA2, catB4, and fosA6, and mutations of GyrA (GyrA-83F and GyrA-87A) and ParC (ParC-80I) were also found. Overall, our study highlights the importance of monitoring susceptibility during ceftazidime-avibactam treatment and accurate detection of KPC variants. IMPORTANCE Carbapenem-resistant Enterobacterales (CRE) are one of the most serious antimicrobial resistance problems in the world, listed as an "urgent" threat by the U.S. Centers for Disease Control and Prevention. Among CRE, K. pneumoniae-carbapenemase-producing Klebsiella pneumoniae (KPC-KP) has become a significant health threat due to its rapid transmissibility and high mortality. With the wider clinical use of ceftazidime-avibactam, reports of resistance have increased in recent years even though the overall resistance rate remains relatively low. Among the reported resistance mechanisms are mainly mutations derived from the blaKPC-2 or blaKPC-3 gene. Here, we describe the characterization of a ceftazidime-avibactam-resistant blaKPC-112-positive K. pneumoniae clinical isolate for the first time. A number of Enterobacteriaceae isolates producing these kinds of KPC variants might be missed by conventional antimicrobial susceptibility testing (AST) methods and lead to irrational drug use. So, this study of KPC-112 will help to establish the diversity of KPCs and remind researchers of the challenge of drug resistance and detection brought by the KPC variants.


Asunto(s)
Ceftazidima , Infecciones por Klebsiella , Estados Unidos , Humanos , Ceftazidima/farmacología , Klebsiella pneumoniae , Infecciones por Klebsiella/tratamiento farmacológico , beta-Lactamasas/genética , beta-Lactamasas/farmacología , Carbapenémicos/farmacología
17.
Front Microbiol ; 13: 916304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875519

RESUMEN

The prevalence of carbapenem-resistant Klebsiella pneumoniae is increasing. Although carbapenemase production is the main resistance mechanism of K. pneumonia to carbapenems, there are still some reports of non-carbapenemase-producing K.pneumoniae showing high-level resistance to carbapenems. In this study, we had also isolated a carbapenemase-negative carbapenem-resistant K. pneumoniae L204 from a patient with an asymptomatic urinary tract infection. Species identification was performed using MALDI-TOF MS, and carbapenemase-encoding genes were detected using both NG-test carba-5 and whole-genome sequencing. Antimicrobial susceptibility testing was performed by the broth microdilution method according to CLSI guidance. The results of antimicrobial susceptibility testing indicated that K. pneumoniae L204 was resistant to meropenem (MIC = 16 mg/L) and imipenem (MIC = 4 mg/L), but susceptible to ceftazidime-avibactam (MIC = 8 mg/L). Through whole-genome sequencing, several resistance genes had been identified, including bla TEM-1B, bla CTX-M-167, bla SHV-1, aac(6')-1b-cr, qnrS, aadA16, tet(A), fosA, sul1, and mph(A). The efflux pump inhibition testing showed that the efflux pump was not involved in the resistance mechanism to carbapenems. The result of the conjugation experiment indicated that the plasmid with bla CTX-M-167 and bla SHV-1 was transferrable. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that K. pneumoniae L204 only contained outer membrane porin OmpK35.

18.
Front Microbiol ; 13: 900185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875546

RESUMEN

Enterococci are one of the main causes of gastrointestinal tract infections in the healthcare system and can develop resistance to fosfomycin through plasmid or chromosomally encoded fosfomycin resistance genes. To investigate the mechanisms of fosfomycin resistance, a total of 4,414 clinical isolates of non-replicated clinical enterococci collected from 62 hospitals in 26 provinces or cities in China were tested. Antibiotic susceptibility testing, detection of fosfomycin resistance genes, and cloning of the fosX gene were done. The PFGE, MLST, qRT-PCR, and next genome sequencing were carried out. The results revealed that the fosfomycin-resistant rate of enterococci was 3.5% (153/4,414), and the major resistance mechanism was fosX (101/153) and fosB (52/153) genes. The fosX gene could increase 4- fold fosfomycin MIC in Enterococcus faecium BM4105RF transformants, and the results of PFGE showed the 101 E. faecium carrying fosX were grouped into 48 pulse types. The multilocus sequence typing identified ST555 as the vast majority of STs, mostly distributed in Shanghai, China. Furthermore, the fosX gene expression was strongly related to the fosfomycin-resistant levels of enterococci. The present study was the first to describe the high prevalence presence of the fosX gene in E. faecium from China.

19.
Microbiol Spectr ; 10(4): e0185422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862963

RESUMEN

Novel ß-lactam-ß-lactamase inhibitor combinations (BLBLIs) are in clinical development for the treatment of infections caused by carbapenem-resistant and difficult-to-treat resistant (DTR) (defined as resistance to all tested ß-lactams and fluoroquinolones) Gram-negative bacilli. This study evaluated the in vitro activities of cefepime-zidebactam, ceftazidime-avibactam, cefepime-tazobactam, ceftolozane-tazobactam, and other comparators against 4,042 nonduplicate Gram-negative clinical isolates collected from different regions of China (46 hospitals) in 2019. Based on the pharmacokinetic-pharmacodynamic (PK-PD) breakpoints, cefepime-zidebactam inhibited 98.5% of Enterobacterales and 98.9% of Pseudomonas aeruginosa isolates, respectively. Against carbapenem-resistant and difficult-to-treat resistant Gram-negative bacilli, cefepime-zidebactam demonstrated better activity against Enterobacterales (96% and 97.2%, respectively) and P. aeruginosa (98.2% and 96.9%, respectively). Among the 379 carbapenem-resistant Enterobacterales isolates, the most common carbapenemase genes detected were blaKPC-2 (64.1%) and blaNDM (30.9%). Cefepime-zidebactam showed an MIC90 of ≤2 mg/L for 98.8% of blaKPC-positive isolates and 89.7% of blaNDM-positive isolates. Ceftazidime-avibactam also showed efficient in vitro activity against Enterobacterales (93.6%) and P. aeruginosa (87.7%). Ceftazidime-avibactam was active against 97.5% of blaKPC-positive isolates and 100% of blaOXA-232-positive isolates. Cefepime-zidebactam inhibited 97.3% of Acinetobacter baumannii isolates with an MIC50/90 of 16/32 mg/L. Our study systematically evaluated the in vitro activities of these new BLBLIs against a variety of Gram-negative bacilli, provided preclinical data for the approval of these BLBLIs in China, and supported cefepime-zidebactam and ceftazidime-avibactam as potential efficient therapies for infections caused by carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant P. aeruginosa (CRPA), and DTR isolates. IMPORTANCE Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii are the most common Gram-negative bacilli to cause nosocomial infections throughout the world. Due to their large public health and societal implications, carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and carbapenem-resistant and third-generation-cephalosporin-resistant Enterobacteriaceae were regarded by the World Health Organization (WHO) as a global priority for investment in new drugs in 2017. The present study showed the potent in vitro activity of these novel BLBLIs and other comparators against Gram-negative bacillus isolates, including carbapenem-resistant or difficult-to-treat resistant phenotypes. Polymyxins, tigecycline, and ceftazidime-avibactam (except for blaNDM-positive isolates) were available for the treatment of infections caused by CRE isolates. Currently, cefepime-zidebactam and other BLBLIs have not yet been approved for use in China. Here, our study aimed to evaluate the in vitro activities of BLBLIs against Gram-negative bacillus isolates, especially CRE, before clinical use.


Asunto(s)
Acinetobacter baumannii , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos , Cefalosporinas/farmacología , Bacterias Gramnegativas , Lactamas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Tazobactam , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , beta-Lactamasas/genética
20.
J Glob Antimicrob Resist ; 30: 50-55, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660662

RESUMEN

OBJECTIVES: Enterococcus faecium is one of the important pathogens causing nosocomial infection, which can be resistant to fosfomycin by obtaining the plasmid-encoded fosfomycin resistance genes, and the mutation of MurA protein encoded by chromosome is a newly discovered fosfomycin resistance mechanism in recent years. METHODS: In this study, we found a fosfomycin-resistant clinical isolate of E. faecium Efm_1415 with fosfomycin MIC of 512 mg/L, carrying Asp50Glu mutant of MurA protein, which was never reported before. To study the role and mechanism of this mutant protein in fosfomycin resistance, we used gene cloning, protein expression, and purification, steady-state kinetic, fosfomycin inhibition assay, and next-generation sequencing (NGS) to investigate the functions, characters, and enzymatic kinetic properties of MurA protein. RESULTS: The results revealed that the Asp50Glu MurA can mediate a 4-fold increase in the fosfomycin MIC of the host bacteria. Compared with the wild-type MurA, the affinity of the Asp50Glu MurA to the substrates was increased, and the enzyme activity cannot be inhibited by the concentration of fosfomycin less than 100 mg/L. CONCLUSIONS: The research on the mutant MurA had gained a new understanding of the fosfomycin resistance mechanisms and helped to find new antibiotics with MurA enzyme as the target of action.


Asunto(s)
Transferasas Alquil y Aril , Antibacterianos , Proteínas Bacterianas , Farmacorresistencia Bacteriana , Enterococcus faecium , Fosfomicina , Transferasas Alquil y Aril/genética , Sustitución de Aminoácidos , Antibacterianos/farmacología , Ácido Aspártico/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/genética , Fosfomicina/farmacología , Ácido Glutámico/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...