Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36662224

RESUMEN

Halocynthia roretzi, the edible ascidian, has been demonstrated to be an important source of bioactive natural metabolites. Here, we reported a novel terpenoid compound named Halorotetin A that was isolated from tunic ethanol extract of H. roretzi by silica gel column chromatography, preparative layer chromatography (PLC), and semipreparative-HPLC. 1H and 13C NMRs, 1H-1H COSY, HSQC, HMBC, NOESY, and HRESIMS profiles revealed that Halorotetin A was a novel terpenoid compound with antitumor potentials. We therefore treated the culture cells with Halorotetin A and found that it significantly inhibited the proliferation of a series of tumor cells by exerting cytotoxicity, especially for the liver carcinoma cell line (HepG-2 cells). Further studies revealed that Halorotetin A affected the expression of several genes associated with the development of hepatocellular carcinoma (HCC), including oncogenes (c-myc and c-met) and HCC suppressor genes (TP53 and KEAP1). In addition, we compared the cytotoxicities of Halorotetin A and doxorubicin on HepG-2 cells. To our surprise, the cytotoxicities of Halorotetin A and doxorubicin on HepG-2 cells were similar at the same concentration and Halorotetin A did not significantly reduce the viability of the normal cells. Thus, our study identified a novel compound that significantly inhibited the proliferation of tumor cells, which provided the basis for the discovery of leading compounds for antitumor drugs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Urocordados , Animales , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Urocordados/química , Terpenos/farmacología , Factor 2 Relacionado con NF-E2 , Proliferación Celular
2.
Mar Drugs ; 20(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35621935

RESUMEN

Marine ascidian is becoming one of the main sources of an antitumor drug that has shown high bioactivity and extensive application in cancer treatment. Halocynthia roretzi, an edible marine sea squirt, has been demonstrated to have various kinds of biological activities, such as anti-diabetic, anti-hypertension, and enhancing immunity. In this study, we reported that aqueous extracts from the edible parts of H. roretzi presented significantly inhibiting the efficiency on HepG-2 cell viability. The separate mixed compound exhibited strong effects of inhibitory proliferation and induced apoptosis via the generation of ROS along with the concurrent loss of mitochondrial membrane potential on tumor cells. Furthermore, we found that there existed a significantly synergistic effect of the ascidian-extracted compound mixture with the anti-cancer drug doxorubicin. In the presence of the extracts from H. roretzi, the dose of doxorubicin at the cellular level could be reduced by a half dose. The extracts were further divided by semipreparative-HPLC and the active ingredients were identified as a mixture of fatty amide, which was composed of hexadecanamide, stearamide, and erucamide by UHPLC-MS/MS. Our results suggest that the potential toxicity of ascidian H. roretzi in tumor cells, and the compounds extracted from H. roretzi could be potentially utilized on functional nutraceuticals or as an adjunct in combination with chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Urocordados , Animales , Antineoplásicos/farmacología , Apoptosis , Doxorrubicina/farmacología , Humanos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...