Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Front Neurol ; 15: 1415233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988598

RESUMEN

Background and aims: Endovascular thrombectomy (EVT) is the current standard of care for large vessel occlusion (LVO) acute ischemic stroke (AIS); however, up to two-thirds of EVT patients have poor functional outcomes despite successful reperfusion. Many radiological markers have been studied as predictive biomarkers for patient outcomes in AIS. This study seeks to determine which clinico-radiological factors are associated with outcomes of interest to aid selection of patients for EVT for LVO AIS. Methods: A retrospective study of patients who underwent EVT from 2016 to 2020 was performed. Data on various radiological variables, such as anatomical parameters, clot characteristics, collateral status, and infarct size, were collected alongside traditional demographic and clinical variables. Univariate and multivariate analysis was performed for the primary outcomes of functional independence at 3 months post-stroke (modified Rankin Scale 0-2) and secondary outcomes of in-hospital mortality and symptomatic intracranial hemorrhage. Results: The study cohort comprised 325 consecutive patients with anterior circulation LVO AIS (54.5% male) with a median age of 68 years (interquartile range 57-76). The median NIHSS was 19. Age, hypertension, hyperlipidaemia, National Institutes of Health Stroke Scale (NIHSS), Alberta mCTA score, ASPECTS, clot length, thrombus HU and mTICI score and the angle between ICA and CCA were associated with functional outcomes at 3 months on univariate analysis. On multivariate analysis, age, Alberta mCTA collaterals and NIHSS were significantly associated with functional outcomes, while ASPECTS approached significance. Conclusion: Among the many proposed radiological markers for patients in the hyperacute setting undergoing EVT, the existing well-validated clinico-radiological measures remain strongly associated with functional status.

3.
J Invest Dermatol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810954

RESUMEN

Macroscopic loss of extracellular matrix can lead to chronic defects in skin wound healing, but supplementation of extracellular matrix holds promise for facilitating wound closure, particularly in diabetic wound healing. We recently showed that the extracellular matrix proteoglycan agrin accelerates cutaneous wound healing by improving mechanoperception of migrating keratinocytes and allowing them to respond to mechanical stresses through matrix metalloproteinase 12 (MMP12). RNA-sequencing analysis revealed that in addition to a disorganized extracellular matrix, agrin-depleted skin cells have impaired YAP/TAZ transcriptional outcomes, leading us to hypothesize that YAP/TAZ, as central mechanosensors, drive the functionality of agrin-MMP12 signaling during cutaneous wound repair. In this study, we demonstrate that agrin activates YAP/TAZ during migration of keratinocytes after wounding in vitro and in vivo. Mechanistically, YAP/TAZ sustain agrin and MMP12 protein expression during migration after wounding through positive feedback. YAP/TAZ silencing abolishes agrin-MMP12-mediated force recognition and geometrical constraints. Importantly, soluble agrin therapy accelerates wound closure in diabetic mouse models by engaging MMP12-YAP. Because patients with diabetic foot ulcers and impaired wound healing have reduced expression of agrin-MMP12 that correlates with YAP/TAZ inactivation, we propose that timely activation of YAP/TAZ by soluble agrin therapy can accentuate mechanobiological microenvironments for efficient wound healing, under normal and diabetic conditions.

4.
Front Endocrinol (Lausanne) ; 15: 1379228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745956

RESUMEN

Aims: Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods: Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results: Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions: GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Lipodistrofia , Liraglutida , Animales , Masculino , Ratones , Glucemia/metabolismo , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Resistencia a la Insulina , Lipodistrofia/tratamiento farmacológico , Lipodistrofia/metabolismo , Liraglutida/farmacología , Liraglutida/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Clinics (Sao Paulo) ; 79: 100384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754226

RESUMEN

OBJECTIVE: This article focused on the correlation between the changes of serum total Immunoglobulin E (IgE) and Fractional exhaled Nitric Oxide (FeNO) and idiosyncratic reactions in children with bronchiolitis. METHODS: One hundred children with bronchiolitis and fifty healthy children were enrolled. Serum total IgE and FeNO were assessed, and the diagnostic value for bronchiolitis and the correlation with the severity of bronchiolitis were analyzed. Bronchiolitis children were divided into idiosyncratic + bronchiolitis and non-idiosyncratic + bronchiolitis groups, the relationship between serum total IgE and FeNO and idiosyncratic reaction was determined, and the diagnostic value of serum total IgE and FeNO for idiosyncratic bronchiolitis was examined. RESULTS: FeNO in bronchiolitis children was lower than that in healthy children but there was no significant difference in serum total IgE levels between the two populations. Serum total IgE increased while FeNO decreased with the aggravation of bronchiolitis in bronchiolitis children. The serum total IgE was positively correlated while FeNO was negatively correlated with the severity of bronchiolitis. Serum total IgE was higher in children with idiosyncratic bronchiolitis, but serum total IgE and FeNO were not the risk factors for idiosyncratic bronchiolitis; Area Under the Curve (AUC) of serum total IgE and FeNO for the diagnosis of idiosyncratic bronchiolitis was less than 0.7. CONCLUSION: Serum total IgE and FeNO in children with bronchiolitis are related to disease severity and idiosyncratic reaction. FeNO has a diagnostic value for bronchiolitis, but not for idiosyncratic bronchiolitis.


Asunto(s)
Bronquiolitis , Inmunoglobulina E , Óxido Nítrico , Índice de Severidad de la Enfermedad , Humanos , Inmunoglobulina E/sangre , Bronquiolitis/sangre , Bronquiolitis/inmunología , Femenino , Masculino , Lactante , Óxido Nítrico/análisis , Óxido Nítrico/sangre , Estudios de Casos y Controles , Preescolar , Prueba de Óxido Nítrico Exhalado Fraccionado , Biomarcadores/sangre , Biomarcadores/análisis , Valores de Referencia , Estadísticas no Paramétricas
6.
Biochem J ; 480(24): 2045-2058, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38078799

RESUMEN

The SLC7A11/xCT cystine and glutamate antiporter has emerged as an attractive target for cancer therapy due to its selective overexpression in multiple cancers and its role in preventing ferroptosis. Utilizing pharmacological and genetic approaches in hepatocellular carcinoma cell lines, we demonstrate that overexpression of SLC7A11 engenders hypersensitivity towards l-selenocystine, a naturally occurring diselenide that bears close structural similarity to l-cystine. We find that the abundance of SLC7A11 positively correlates with sensitivity to l-selenocystine, but surprisingly, not to Erastin, an inhibitor of SLC7A11 activity. Our data indicate that SLC7A11 acts as a transport channel for l-selenocystine, which preferentially incites acute oxidative stress and damage eventuating to cell death in cells that highly express SLC7A11. Hence, our findings raise the prospect of l-selenocystine administration as a novel strategy for targeting cancers that up-regulate SLC7A11 expression.


Asunto(s)
Cistina , Línea Celular Tumoral , Cistina/metabolismo , Regulación hacia Arriba , Sistema de Transporte de Aminoácidos y+/metabolismo
7.
EMBO Mol Med ; 15(12): e17928, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933577

RESUMEN

Loss of pancreatic beta cells is the central feature of all forms of diabetes. Current therapies fail to halt the declined beta cell mass. Thus, strategies to preserve beta cells are imperatively needed. In this study, we identified paired box 6 (PAX6) as a critical regulator of beta cell survival. Under diabetic conditions, the human beta cell line EndoC-ßH1, db/db mouse and human islets displayed dampened insulin and incretin signalings and reduced beta cell survival, which were alleviated by PAX6 overexpression. Adeno-associated virus (AAV)-mediated PAX6 overexpression in beta cells of streptozotocin-induced diabetic mice and db/db mice led to a sustained maintenance of glucose homeostasis. AAV-PAX6 transduction in human islets reduced islet graft loss and improved glycemic control after transplantation into immunodeficient diabetic mice. Our study highlights a previously unappreciated role for PAX6 in beta cell survival and raises the possibility that ex vivo PAX6 gene transfer into islets prior to transplantation might enhance islet graft function and transplantation outcome.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones , Humanos , Animales , Islotes Pancreáticos/metabolismo , Diabetes Mellitus Experimental/terapia , Insulina/metabolismo
8.
Gut Microbes ; 15(2): 2283911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010368

RESUMEN

The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Encéfalo , Cabeza , Mamíferos
9.
Aging Dis ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815900

RESUMEN

Despite decades of research being conducted to understand what physiological deficits in the brain are an underlying basis of psychiatric diseases like schizophrenia, it has remained difficult to establish a direct causal relationship between neuronal dysfunction and specific behavioral phenotypes. Moreover, it remains unclear how metabolic processes, including amino acid metabolism, affect neuronal function and consequently modulate animal behaviors. PRODH, which catalyzes the first step of proline degradation, has been reported as a susceptibility gene for schizophrenia. It has consistently been shown that PRODH knockout mice exhibit schizophrenia-like behaviors. However, whether the loss of PRODH directly impacts neuronal function or whether such neuronal deficits are linked to schizophrenia-like behaviors has not yet been examined. Herein, we first ascertained that dysregulated proline metabolism in humans is associated with schizophrenia. We then found that PRODH was highly expressed in the oreins layer of the mouse dorsal hippocampus. By using AAV- mediated shRNA, we depleted PRODH expression in the mouse dorsal hippocampus and subsequently observed hyperactivity and impairments in the social behaviors, learning, and memory of these mice. Furthermore, the loss of PRODH led to altered neuronal morphology and function both in vivo and in vitro. Our study demonstrates that schizophrenia-like behaviors may arise from dysregulated proline metabolism due to the loss of PRODH and are associated with altered neuronal morphology and function in mice.

10.
Neuroimage ; 278: 120273, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473977

RESUMEN

BACKGROUND: Metabolic syndrome score in children assesses the risk of developing cardiovascular disease in future. We aim to probe the role of the caudate in relation to the metabolic syndrome score. Furthermore, using both functional and structural neuroimaging, we aim to examine the interplay between functional and structural measures. METHODS: A longitudinal birth cohort study with functional and structural neuroimaging data obtained at 4.5, 6.0 and 7.5 years and metabolic syndrome scores at 8.0 years was used. Pearson correlation and linear regression was used to test for correlation fractional anisotropy (FA) and fractional amplitude of low frequency fluctuations (fALFF) of the caudate with metabolic syndrome scores. Mediation analysis was used to test if later brain measures mediated the relation between earlier brain measures and metabolic syndrome scores. Inhibitory control was also tested as a mediator of the relation between caudate brain measures and metabolic syndrome scores. RESULTS: FA at 4.5 years and fALFF at 7.5 years of the left caudate was significantly correlated with metabolic syndrome scores. Post-hoc mediation analysis showed that fALFF at 7.5 years fully mediated the relation between FA at 4.5 years and metabolic syndrome scores. Inhibitory control was significantly correlated with fALFF at 7.5 years, but did not mediate the relation between fALFF at 7.5 years and metabolic syndrome scores. CONCLUSIONS: We found that variations in caudate microstructure at 4.5 years predict later variation in functional activity at 7.5 years. This later variation in functional activity fully mediates the relation between microstructural changes in early childhood and metabolic syndrome scores at 8.0 years.


Asunto(s)
Imagen por Resonancia Magnética , Síndrome Metabólico , Preescolar , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Estudios de Cohortes , Síndrome Metabólico/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
11.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298123

RESUMEN

Through a comprehensive analysis of the gene expression and dependency in HCC patients and cell lines, LAT1 was identified as the top amino acid transporter candidate supporting HCC tumorigenesis. To assess the suitability of LAT1 as a HCC therapeutic target, we used CRISPR/Cas9 to knockout (KO) LAT1 in the epithelial HCC cell line, Huh7. Knockout of LAT1 diminished its branched chain amino acid (BCAA) transport activity and significantly reduced cell proliferation in Huh7. Consistent with in vitro studies, LAT1 ablation led to suppression of tumor growth in a xenograft model. To elucidate the mechanism underlying the observed inhibition of cell proliferation upon LAT1 KO, we performed RNA-sequencing analysis and investigated the changes in the mTORC1 signaling pathway. LAT1 ablation resulted in a notable reduction in phosphorylation of p70S6K, a downstream target of mTORC1, as well as its substrate S6RP. This reduced cell proliferation and mTORC1 activity were rescued when LAT1 was overexpressed. These findings imply an essential role of LAT1 for maintenance of tumor cell growth and additional therapeutic angles against liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Transducción de Señal , Línea Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
12.
Cell Metab ; 35(4): 711-721.e4, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37019081

RESUMEN

Metabolism is fundamental to life, but measuring metabolic reaction rates remains challenging. Here, we applied C13 fluxomics to monitor the metabolism of dietary glucose carbon in 12 tissues, 9 brain compartments, and over 1,000 metabolite isotopologues over a 4-day period. The rates of 85 reactions surrounding central carbon metabolism are determined with elementary metabolite unit (EMU) modeling. Lactate oxidation, not glycolysis, occurs at a comparable pace with the tricarboxylic acid cycle (TCA), supporting lactate as the primary fuel. We expand the EMU framework to track and quantify metabolite flows across tissues. Specifically, multi-organ EMU simulation of uridine metabolism shows that tissue-blood exchange, not synthesis, controls nucleotide homeostasis. In contrast, isotopologue fingerprinting and kinetic analyses reveal the brown adipose tissue (BAT) having the highest palmitate synthesis activity but no apparent contribution to circulation, suggesting a tissue-autonomous synthesis-to-burn mechanism. Together, this study demonstrates the utility of dietary fluxomics for kinetic mapping in vivo and provides a rich resource for elucidating inter-organ metabolic cross talk.


Asunto(s)
Carbono , Glucosa , Animales , Ratones , Glucosa/metabolismo , Carbono/metabolismo , Ciclo del Ácido Cítrico , Ácido Láctico/metabolismo , Lípidos
13.
CRISPR J ; 6(2): 163-175, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071672

RESUMEN

Microinjected transgenes, both large and small, are known to insert randomly into the mouse genome. Traditional methods of mapping a transgene are challenging, thus complicating breeding strategies and accurate interpretation of phenotypes, particularly when a transgene disrupts critical coding or noncoding sequences. As the vast majority of transgenic mouse lines remain unmapped, we developed CRISPR-Cas9 Long-Read Sequencing (CRISPR-LRS) to ascertain transgene integration loci. This novel approach mapped a wide size range of transgenes and uncovered more complex transgene-induced host genome re-arrangements than previously appreciated. CRISPR-LRS offers a facile, informative approach to establish robust breeding practices and will enable researchers to study a gene without confounding genetic issues. Finally, CRISPR-LRS will find utility in rapidly and accurately interrogating gene/genome editing fidelity in experimental and clinical settings.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratones , Sistemas CRISPR-Cas/genética , Transgenes , Genoma/genética , Ratones Transgénicos
14.
J Mol Endocrinol ; 70(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356262

RESUMEN

The pathogenesis of nonalcoholic steatohepatitis (NASH), a severe stage of nonalcoholic fatty liver disease, is complex and implicates multiple cell interactions. However, therapies for NASH that target multiple cell interactions are still lacking. Melatonin (MEL) alleviates NASH with mechanisms not yet fully understood. Thus, we herein investigate the effects of MEL on key cell types involved in NASH, including hepatocytes, macrophages, and stellate cells. In a mouse NASH model with feeding of a methionine and choline-deficient (MCD) diet, MEL administration suppressed lipid accumulation and peroxidation, improved insulin sensitivity, and attenuated inflammation and fibrogenesis in the liver. Specifically, MEL reduced proinflammatory cytokine expression and inflammatory signal activation and attenuated CD11C+CD206- M1-like macrophage polarization in the liver of NASH mice. The reduction of proinflammatory response by MEL was also observed in the lipopolysaccharide-stimulated Raw264.7 cells. Additionally, MEL increased liver fatty acid ß-oxidation, leading to reduced lipid accumulation, and restored the oleate-loaded primary hepatocytes. Finally, MEL attenuated hepatic stellate cell (HSC) activation and fibrogenesis in the liver of MCD-fed mice and in LX-2 human HSCs. In conclusion, MEL acts on multiple cell types in the liver to mitigate NASH-associated phenotypes, supporting MEL or its analog as potential treatment for NASH.


Asunto(s)
Melatonina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Metionina/metabolismo , Metionina/farmacología , Dieta , Modelos Animales de Enfermedad , Colina/metabolismo , Colina/farmacología , Lípidos
15.
Mol Ther Methods Clin Dev ; 27: 206-216, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36320417

RESUMEN

Congenital generalized lipodystrophy type 2 is a serious multisystem disorder with limited treatment options. It is caused by mutations affecting the BSCL2 gene, which encodes the protein seipin. Patients with congenital generalized lipodystrophy type 2 lack both metabolic and mechanical adipose tissue and develop severe metabolic complications including hepatic steatosis, lipoatrophic diabetes, and cardiovascular disease. Gene therapies are becoming viable treatments, helping to alleviate inherited and acquired human disorders. We aimed to determine whether gene therapy could offer an effective form of medical intervention for lipodystrophy. We examined whether systemic adeno-associated virus delivery of human BSCL2 could reverse metabolic disease in seipin knockout mice, where white adipose tissue is absent. We reveal that adeno-associated virus gene therapy targets adipose progenitor cells in vivo and substantially restores white adipose tissue development in adult seipin knockout mice. This resulted in both rapid and prolonged beneficial effects to metabolic health in this pre-clinical mouse model of congenital generalized lipodystrophy type 2. Hyperglycemia was normalized within 2 weeks post-treatment together with normalization of severe insulin resistance. We propose that gene therapy offers great potential as a therapeutic strategy to correct multiple metabolic complications in patients with congenital lipodystrophy.

16.
Mol Cells ; 45(11): 781-788, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36324271

RESUMEN

Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.


Asunto(s)
Trastornos Mentales , Humanos , Prolina/metabolismo
17.
Heliyon ; 8(10): e11132, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36276725

RESUMEN

To interrupt SARS-CoV-2 transmission chains, Ultraviolet-C (UVC) irradiation has emerged as a potential disinfection tool to aid in blocking the spread of coronaviruses. While conventional 254-nm UVC mercury lamps have been used for disinfection purposes, other UVC wavelengths have emerged as attractive alternatives but a direct comparison of these tools is lacking with the inherent mechanistic properties unclear. Our results using human coronaviruses, hCoV-229E and hCoV-OC43, have indicated that 277-nm UVC LED is most effective in viral inactivation, followed by 222-nm far UVC and 254-nm UVC mercury lamp. While UVC mercury lamp is more effective in degrading viral genomic content compared to 277-nm UVC LED, the latter results in a pronounced photo-degradation of spike proteins which potentially contributed to the higher efficacy of coronavirus inactivation. Hence, inactivation of coronaviruses by 277-nm UVC LED irradiation constitutes a more promising method for disinfection.

18.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36012379

RESUMEN

Ultraviolet (UV) germicidal tools have recently gained attention as a disinfection strategy against the COVID-19 pandemic, but the safety profile arising from their exposure has been controversial and impeded larger-scale implementation. We compare the emerging 222-nanometer far UVC and 277-nanometer UVC LED disinfection modules with the traditional UVC mercury lamp emitting at 254 nm to understand their effects on human retinal cell line ARPE-19 and HEK-A keratinocytes. Cells illuminated with 222-nanometer far UVC survived, while those treated with 254-nanometer and 277-nanometer wavelengths underwent apoptosis via the JNK/ATF2 pathway. However, cells exposed to 222-nanometer far UVC presented the highest degree of DNA damage as evidenced by yH2AX staining. Globally, these cells displayed transcriptional changes in cell-cycle and senescence pathways. Thus, the introduction of 222-nanometer far UVC lamps for disinfection purposes should be carefully considered and designed with the inherent dangers involved.


Asunto(s)
COVID-19 , Rayos Ultravioleta , Animales , Daño del ADN , Desinfección/métodos , Humanos , Mamíferos , Pandemias , Rayos Ultravioleta/efectos adversos
19.
Semin Cancer Biol ; 86(Pt 3): 445-456, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35131480

RESUMEN

Alterations in metabolic pathways are a hallmark of cancer. A deeper understanding of the contribution of different metabolites to carcinogenesis is thus vitally important to elucidate mechanisms of tumor initiation and progression to inform therapeutic strategies. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide and its altered metabolic landscape is beginning to unfold with the advancement of technologies. In particular, characterization of the lipidome of human HCCs has accelerated, and together with biochemical analyses, are revealing recurrent patterns of alterations in glycerophospholipid, sphingolipid, cholesterol and bile acid metabolism. These widespread alterations encompass a myriad of lipid species with numerous roles affecting multiple hallmarks of cancer, including aberrant growth signaling, metastasis, evasion of cell death and immunosuppression. In this review, we summarize the current trends and findings of the altered lipidomic landscape of HCC and discuss their potential biological significance for hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Lipidómica , Carcinogénesis/genética , Transformación Celular Neoplásica
20.
Cell Rep ; 38(8): 110408, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196497

RESUMEN

The adipose tissue is a key site regulating energy metabolism. One of the contributing factors behind this is browning of white adipose tissue (WAT). However, knowledge of the intracellular determinants of the browning process remains incomplete. By generating adipocyte-specific Senp2 knockout (Senp2-aKO) mice, here we show that SENP2 negatively regulates browning by de-conjugating small ubiquitin-like modifiers from C/EBPß. Senp2-aKO mice are resistant to diet-induced obesity due to increased energy expenditure and heat production. Senp2 knockout promotes beige adipocyte accumulation in inguinal WAT by upregulation of thermogenic gene expression. In addition, SENP2 knockdown promotes thermogenic adipocyte differentiation of precursor cells isolated from inguinal and epididymal WATs. Mechanistically, sumoylated C/EBPß, a target of SENP2, suppresses expression of HOXC10, a browning inhibitor, by recruiting a transcriptional repressor DAXX. These findings indicate that a SENP2-C/EBPß-HOXC10 axis operates for the control of beige adipogenesis in inguinal WAT.


Asunto(s)
Adipocitos Beige , Proteína beta Potenciadora de Unión a CCAAT , Cisteína Endopeptidasas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Adipocitos Beige/metabolismo , Adipogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Cisteína Endopeptidasas/metabolismo , Metabolismo Energético/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...