Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901821

RESUMEN

Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.


Asunto(s)
Células Madre Pluripotentes , Animales , Humanos , Medicina Regenerativa , Transducción de Señal , Células Madre Totipotentes , Plantas
2.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293072

RESUMEN

Cotton is an important economic crop. Fusarium and Verticillium are the primary pathogenic fungi that threaten both the quality and sustainable production of cotton. As an opportunistic pathogen, Fusarium causes various human diseases, including fungal keratitis, which is the most common. Therefore, there is an urgent need to study and clarify the resistance mechanisms of cotton and humans toward Fusarium in order to mitigate, or eliminate, its harm. Herein, we first discuss the resistance and susceptibility mechanisms of cotton to Fusarium and Verticillium wilt and classify associated genes based on their functions. We then outline the characteristics and pathogenicity of Fusarium and describe the multiple roles of human neutrophils in limiting hyphal growth. Finally, we comprehensively compare the similarities and differences between animal and plant resistance to Fusarium and put forward new insights into novel strategies for cotton disease resistance breeding and treatment of Fusarium infection in humans.


Asunto(s)
Fusarium , Verticillium , Humanos , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Resistencia a la Enfermedad/genética , Gossypium , Mecanismos de Defensa
3.
Planta ; 256(3): 63, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35995890

RESUMEN

MAIN CONCLUSION: GhMYC2 regulates the gossypol biosynthesis pathway in cotton through activation of the expression of gossypol synthesis gene CYP71BE79, CDNC, CYP706B1, DH1, and CYP82D113. Cotton is one of the main cash crops globally. Cottonseed contains fiber, fat, protein, and starch, and has important economic value. However, gossypol in cottonseed seriously affects the development and utilization of cottonseed. Nonetheless, gossypol has great application potential in agriculture, medicine, and industry. Therefore, it is very important to study gossypol biosynthesis and its upstream regulatory pathways. It has been reported that the content of gossypol in hairy roots of cotton is regulated through jasmonic acid signaling; however, the specific molecular mechanism has not been revealed yet. We found that the expression of basic helix-loop-helix family transcription factor GhMYC2 was significantly upregulated after exogenous administration of methyl jasmonate to cotton seedlings, and the content of gossypol changed significantly with the variation of GhMYC2 expression. Further studies revealed that GhMYC2 could specifically bind to the G-Box in the promoter region of CDNC, CYP706B1, DH1, CYP82D113, CYP71BE79 to activate its expression and regulate gossypol synthesis, and its activation of CYP71BE79 promoter was inhibited by GhJAZ2. Not only that GhMYC2 could also interact with GoPGF. In this work, the molecular mechanisms of gossypol biosynthesis regulated by GhMYC2 were analyzed. The results provide a theoretical basis for cultivating new varieties of low-gossypol or high-gossypol cotton and creating excellent germplasm resources.


Asunto(s)
Gosipol , Vías Biosintéticas/genética , Aceite de Semillas de Algodón , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Gossypium/genética , Gossypium/metabolismo , Gosipol/metabolismo , Metabolismo Secundario
4.
Genes (Basel) ; 12(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680988

RESUMEN

The EXO70 gene is a vital component of the exocytosis complex and participates in biological processes ranging from plant cell division to polar growth. There are many EXO70 genes in plants and their functions are extensive, but little is known about the EXO70 gene family in cotton. Here, we analyzed four cotton sequence databases, identified 165 EXO70 genes, and divided them into eight subgroups (EXO70A-EXO70H) based on their phylogenetic relationships. EXO70A had the most exons (≥11), whereas the other seven each had only one or two exons. Hence, EXO70A may have many important functions. The 84 EXO70 genes in Asian and upland cotton were expressed in the roots, stems, leaves, flowers, fibers, and/or ovules. Full-length GhEXO70A1-A cDNA was homologously cloned from upland cotton (Gossypium hirsutum, G. hirsutum). Subcellular analysis revealed that GhEXO70A1-A protein was localized to the plasma membrane. A yeast two-hybrid assay revealed that GhEXO70A1-A interacted with GhEXO84A, GhEXO84B, and GhEXO84C. GhEXO70A1-A silencing significantly altered over 4000 genes and changed several signaling pathways related to metabolism. Thus, the EXO70 gene plays critical roles in the physiological functions of cotton.


Asunto(s)
Genes de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...