Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1330228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680496

RESUMEN

Introduction: Aryl hydrocarbon receptor (AhR) is a transcription factor that performs various functions upon ligand activation. Several studies have explored the role of AhR expression in tumor progression and immune surveillance. Nevertheless, investigations on the distribution of AhR expression, specifically in cancer or immune cells in the tumor microenvironment (TME), remain limited. Examining the AhR expression and distribution in the TME is crucial for gaining insights into the mechanism of action of AhR-targeting anticancer agents and their potential as biomarkers. Methods: Here, we used multiplexed immunohistochemistry (mIHC) and image cytometry to investigate the AhR expression and distribution in 513 patient samples, of which 292 are patients with one of five solid cancer types. Additionally, we analyzed the nuclear and cytosolic distribution of AhR expression. Results: Our findings reveal that AhR expression was primarily localized in cancer cells, followed by stromal T cells and macrophages. Furthermore, we observed a positive correlation between the nuclear and cytosolic expression of AhR, indicating that the expression of AhR as a biomarker is independent of its localization. Interestingly, the expression patterns of AhR were categorized into three clusters based on the cancer type, with high AhR expression levels being found in regulatory T cells (Tregs) in non-small cell lung cancer (NSCLC). Discussion: These findings are anticipated to serve as pivotal evidence for the design of clinical trials and the analysis of the anticancer mechanisms of AhR-targeting therapies.


Asunto(s)
Neoplasias , Receptores de Hidrocarburo de Aril , Microambiente Tumoral , Receptores de Hidrocarburo de Aril/metabolismo , Humanos , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Biomarcadores de Tumor/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
Front Immunol ; 15: 1336246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515751

RESUMEN

Introduction: To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods: We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results: Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion: These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antígenos CD/metabolismo , Linfocitos Infiltrantes de Tumor , Interleucina-2/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/metabolismo , Citocinas/metabolismo , Tetraspaninas/metabolismo , Tetraspanina 28 , Proteína Kangai-1/metabolismo
3.
Korean J Physiol Pharmacol ; 28(2): 121-127, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414395

RESUMEN

Vancomycin is a frequently used antibiotic in intensive care units, and the patient's renal clearance affects the pharmacokinetic characteristics of vancomycin. Several advantages have been reported for vancomycin continuous intravenous infusion, but studies on continuous dosing regimens based on patients' renal clearance are insufficient. The aim of this study was to develop a vancomycin serum concentration prediction model by factoring in a patient's renal clearance. Children admitted to our institution between July 1, 2021, and July 31, 2022 with records of continuous infusion of vancomycin were included in the study. Sex, age, height, weight, vancomycin dose by weight, interval from the start of vancomycin administration to the time of therapeutic drug monitoring sampling, and vancomycin serum concentrations were analyzed with the linear regression analysis of the mixed effect model. Univariable regression analysis was performed using the vancomycin serum concentration as a dependent variable. It showed that vancomycin dose (p < 0.001) and serum creatinine (p = 0.007) were factors that had the most impact on vancomycin serum concentration. Vancomycin serum concentration was affected by vancomycin dose (p < 0.001) and serum creatinine (p = 0.001) with statistical significance, and a multivariable regression model was obtained as follows: Vancomycin serum concentration (mg/l) = -1.296 + 0.281 × vancomycin dose (mg/kg) + 20.458 × serum creatinine (mg/dl) (adjusted coefficient of determination, R2 = 0.66). This prediction model is expected to contribute to establishing an optimal continuous infusion regimen for vancomycin.

4.
Adv Sci (Weinh) ; 11(12): e2305298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233196

RESUMEN

High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg-1, 1022 Wh L-1, highlighting the feasibility even in current battery production lines.

5.
Cancers (Basel) ; 15(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37760631

RESUMEN

(1) Background: This study investigated whether polo-like kinase 4 (PLK4) is a suitable therapeutic target or biomarker for lung adenocarcinoma (LUAD). (2) Methods: We acquired LUAD data from The Cancer Genome Atlas (TCGA) database through the UCSC Xena data portal. Gene expression, clinical, survival, and mutation data from multiple samples were analyzed. Gene enrichment analysis, unsupervised clustering of PLK4-related pathways, and differential gene expression analyses were performed. Additionally, correlations, t-tests, survival analyses, and statistical analyses were performed. (3) Results: PLK4 expression was higher in LUAD tissues than in normal tissues and was associated with poor prognosis for both overall and progression-free survival in LUAD. PLK4 was highly correlated with cell-proliferation-related pathways using Gene Ontology (GO) biological process terms. PLK4 expression and pathways that were highly correlated with PLK4 expression levels were upregulated in patients with LUAD with the TP53 mutation. (4) Conclusions: PLK4 expression affects the survival of patients with LUAD and is a potential therapeutic target for LUAD with TP53 mutations.

6.
ACS Appl Mater Interfaces ; 15(30): 36748-36758, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467137

RESUMEN

Solid-state batteries (SSBs) have emerged as a promising alternative to conventional liquid electrolyte batteries due to their potential for higher energy density and improved safety. However, achieving high performance in SSBs is difficult because of inadequate contact and interfacial reactions that generate high interfacial resistance, as well as inadequate solid-solid contact between electrodes. These chronic issues are associated with inhomogeneous ion and electron transport networks owing to imperfect solid-solid interfacial contact. This study developed an optimal interfacial engineering strategy to facilitate an ion-electron transport network by designing an active material (NCM622) uniformly filled with a thin layer of a solid electrolyte (garnet-type Li6.25Ga0.25La3Zr2O12) and conductive additives. The optimal composite electrode architecture enhanced the high capacity, high rate capability, and long-term cycle stability, even at room temperature, owing to the percolating network for facile ionic conduction that assured a homogeneous reaction. In addition to mitigating the mechanical degradation of the cathode electrode, it also reduced the crosstalk effects on the anode-solid electrolyte interface. Effectively optimizing the selection and use of conductive additives in composite electrodes offers a promising approach to addressing key performance-limiting factors in SSBs, including interfacial resistance and solid-solid contact issues. This study underscores the critical importance of cathode architecture design for achieving high-performance SSBs by ensuring that the interfaces are intact with solid electrolytes at both the cathode and anode interfaces while promoting uniform reactions. This study provides valuable insights into the development of SSBs with improved performance, which could have significant implications for a wide range of applications.

7.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37511556

RESUMEN

The removal of nitrogen from coal tar pitch (CTP) through the hydrodenitrogenation (HDN) of CTP and its molecular behavior were evaluated in the presence of NiMo/γ-alumina and CoMo/γ-alumina catalysts. Fourier transform ion cyclotron resonance mass spectrometry with atmospheric pressure photoionization was used to analyze the complicated chemical classes and species of CTP and the treated products at the molecular level. Nitrogen species were qualitatively analyzed before and after hydrotreatment. A single-stage hydrotreatment with an HDN catalyst resulted in a high sulfur removal performance (85.6-94.7%) but a low nitrogen removal performance (26.8-29.2%). Based on relative abundance analyses of nitrogen and binary nitrogen species, CcHh-NnSs was the most challenging species to remove during HDN treatment. Furthermore, prior hydrodesulfurization was combined with HDN treatment, and the dual hydrotreatments yielded a significantly improved nitrogen removal performance (46.4-48.7%).


Asunto(s)
Alquitrán , Nitrógeno/química , Óxido de Aluminio , Desnitrificación , Espectrometría de Masas/métodos
8.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182618

RESUMEN

Rosacea is a common chronic cutaneous inflammatory disorder. Recently, patients with rosacea were identified as having a higher risk of developing various comorbidities such as cardiovascular disease, psychiatric disorders, neurologic disorders, and gastrointestinal disorders. However, the risks of some comorbidities in patients with rosacea are somewhat contradictory, depending upon the study design. Moreover, pathomechanisms associated with the comorbidities of patients with rosacea remain poorly elucidated. The purpose of this review was to provide the most up-to-date evidence on the risks of neuropsychiatric and gastrointestinal comorbidities in patients with rosacea. Moreover, the molecular pathomechanisms associated with neuropsychiatric and gastrointestinal comorbidities in patients with rosacea were evaluated based on recent studies. This review was also intended to focus more on the role of the gut-brain-skin axis in the association of neuropsychiatric and gastrointestinal comorbidities in rosacea.


Asunto(s)
Enfermedades Gastrointestinales/complicaciones , Enfermedades del Sistema Nervioso/complicaciones , Rosácea/complicaciones , Encéfalo/fisiopatología , Comorbilidad , Enfermedades Gastrointestinales/epidemiología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiopatología , Humanos , Incidencia , Modelos Biológicos , Enfermedades del Sistema Nervioso/epidemiología , Factores de Riesgo , Rosácea/epidemiología , Piel/microbiología , Piel/fisiopatología
9.
Sci Rep ; 9(1): 48, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631086

RESUMEN

Human head and body lice attach their eggs respectively to human hair or clothing by female lice secreted glue that hardens into a nit sheath that protects the egg. In this study, a series of experiments were conducted to characterize the glue-like material of the nit sheath. Fourier transform infrared spectroscopy on embryo-cleared nit showed proteinaceous amide I bands. With this result, we determined the amino acid composition of the nit sheath proteins and performed similarity search against the protein products of the body louse genome to identify the candidate nit sheath proteins. The identified two homologous proteins newly named as louse nit sheath protein (LNSP) 1 and LNSP2 are composed of three domains of characteristic repeating sequences. The N-terminal and middle domains consist of tandem two-residue repeats of Gln-Ala and Gly-Ala, respectively, which are expected to fold into ß-strands and may further stack into ß-sheets, whereas the C-terminal domain contains multiple consecutive Gln residues. Temporal and spatial transcription profiling demonstrated that both LNSP1 and LNSP2 are most predominantly expressed in the accessory gland of females of egg-laying stage, supporting that they indeed encode the nit sheath proteins. Further adhesive property of recombinant partial LNSP1 suggests that both LNSP1 and LNSP2 may act as glues.


Asunto(s)
Adhesivos/química , Adhesivos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Pediculus/metabolismo , Animales , Proteínas de Insectos/genética , Secuencias Repetitivas de Aminoácido , Análisis de Secuencia de Proteína , Espectroscopía Infrarroja por Transformada de Fourier
10.
Int J Biol Macromol ; 94(Pt A): 634-641, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27773839

RESUMEN

Ice nucleation protein (INP) with its functional domain consisting of multiple 48-residue repeat units effectively induces super-cooled water into ice. Circular dichroism and infrared deconvolution analyses on a soluble 240-residue fragment of Pseudomonas syringae InaZ (InaZ240) containing five 48-residue repeat units indicated that it is mostly composed of ß-sheet and random coil. Analytical ultracentrifugation suggested that InaZ240 behaves as a monomer of an elongated ellipsoid. However, InaZ240 showed only minimum ice binding compared to anti-freeze proteins. Other P. syringae InaZ proteins with more 48-residue repeat units were made, in which the largest soluble fragment obtainable was an InaZ with twelve 48-residue repeat units. Size-exclusion chromatography analyses further suggested that the overall shape of the expressed InaZ fragments is pH-dependent, which becomes compact as the numbers of 48-residue repeat unit increase.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Hielo/análisis , Fragmentos de Péptidos/química , Pseudomonas syringae/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad , Ultracentrifugación
11.
Bioorg Med Chem Lett ; 26(11): 2580-3, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27117431

RESUMEN

p21-Activated kinases (PAKs) which belong to the family of ste20 serine/threonine protein kinases regulate cytoskeletal reorganization, cell motility, cell proliferation, and oncogenic transformation which are all related to the cellular functions during cancer induction and metastasis. The fact that PAK mutations are detected in multiple tumor tissues makes PAKs a novel therapeutic drug target. In this study, an imidazo[4,5-b]pyridine-based PAK4 inhibitor, KY-04045 (6-Bromo-2-(3-isopropyl-1-methyl-1H-pyrazol-4-yl)-1H-imidazo[4,5-b]pyridine), was discovered using a virtual site-directed fragment-based drug design and was validated using an inhibition assay. Although PAK4 affinity to KY-04045 seems much weaker than that of the reported PAK4 inhibitors, the location of KY-04045 is clearly defined in the structure of PAK4 co-crystallized with KY-04045. The crystal structure illustrates that the pyrazole and imidazopyridine rings of KY-04045 are sufficient for mediating PAK4 hinge loop interaction. Hence, we believe that KY-04045 can be exploited as a basic building block in designing novel imidazo[4,5-b]pyridine-based PAK4 inhibitors.


Asunto(s)
Descubrimiento de Drogas , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Quinasas p21 Activadas/antagonistas & inhibidores , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Quinasas p21 Activadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...