Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062109

RESUMEN

Septic encephalopathy (SE) represents a severe inflammatory syndrome linked to elevated septic mortality rates, lacking specific therapeutic interventions, and often resulting in enduring neurological sequelae. The present investigation endeavors to elucidate the involvement of C-X-C Motif Chemokine Receptor 2 (CXCR2) in the pathogenesis of SE and to explore the potential of CXCR2 modulation as a therapeutic avenue for SE. Employing a murine SE model induced by lipopolysaccharide (LPS) administration, CXCR2 knockout mice and the CXCR2 inhibitor SB225002 were utilized to assess neutrophil recruitment, endothelial integrity, and transendothelial migration. Our findings substantiate that either CXCR2 deficiency or its inhibition curtails neutrophil recruitment without impacting their adhesion to cerebral endothelial cells. This phenomenon is contingent upon endothelial CXCR2 expression rather than CXCR2's presence on neutrophils. Furthermore, the CXCR2 blockade preserves the integrity of tight junction protein ZO-1 and mitigates F-actin stress fiber formation in cerebral endothelial cells following septic challenge. Mechanistically, CXCL1-mediated CXCR2 activation triggers cerebral endothelial actin contraction via Rho signaling, thereby facilitating neutrophil transmigration in SE. These observations advocate for the potential therapeutic efficacy of CXCR2 inhibition in managing SE.

2.
Biochem Biophys Res Commun ; 718: 150083, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38735138

RESUMEN

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), represent critical clinical syndromes with multifactorial origins, notably stemming from sepsis within intensive care units (ICUs). Despite their high mortality rates, no selective cure is available beside ventilation support. Apoptosis plays a complex and pivotal role in the pathophysiology of acute lung injury. Excessive apoptosis of alveolar epithelial and microvascular endothelial cells can lead to disruption of lung epithelial barrier integrity, impairing the body's ability to exchange blood and gas. At the same time, apoptosis of damaged or dysfunctional cells, including endothelial and epithelial cells, can help maintain tissue integrity and accelerate recovery from organ pro-inflammatory stress. The balance between pro-survival and pro-apoptotic signals in lung injury determines patient outcomes, making the modulation of apoptosis an area of intense research in the quest for more effective therapies. Here we found that protein tyrosine phosphatase receptor type O (PTPRO), a poorly understood receptor-like protein tyrosine phosphatase, is consistently upregulated in multiple tissue types of mice under septic conditions and in the lung alveolar epithelial cells. PTPRO reduction by its selective short-interfering RNA (siRNA) leads to excessive apoptosis in lung alveolar epithelial cells without affecting cell proliferation. Consistently PTPRO overexpression by a DNA construct attenuates apoptotic signaling induced by LPS. These effects of PTPTO on cellular apoptosis are dependent on an ErbB2/PI3K/Akt/NFκB signaling pathway. Here we revealed a novel regulatory pathway of cellular apoptosis by PTPRO in lung alveolar epithelial cells during sepsis.


Asunto(s)
Células Epiteliales Alveolares , Apoptosis , Lipopolisacáridos , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Animales , Humanos , Masculino , Ratones , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Apoptosis/efectos de los fármacos , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Sepsis/metabolismo , Sepsis/patología , Transducción de Señal/efectos de los fármacos
3.
Eur J Obstet Gynecol Reprod Biol ; 296: 185-193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458034

RESUMEN

OBJECTIVE: The aim of this study was to investigate the expression and clinical significance of HIF-1α and DcR3 in endometriosis by analysing clinical case data. Tissue samples were collected for tissue chip analysis and staining, and human endometrial stromal cells were isolated and cultured for cell experiments. Additionally, experiments were conducted on collected peritoneal fluid to explore the association and role of HIF-1α and DcR3 in endometriosis. STUDY DESIGN: Patients who visited the Department of Obstetrics and Gynaecology at Central Hospital in Fengxian District, Shanghai, from January 2018 to December 2021 were recruited for this controlled study. Clinical data and tissue chip staining results were collected for multiple regression analysis on the clinical significance of HIF-1α and DcR3. Endometrial tissue, ovarian cysts, and pelvic fluid were collected, and human endometrial stromal cells were cultured. The impact of HIF-1α on DcR3 in different oxygen environments and its role in endometriosis were investigated through PCR, Western blotting, enzyme-linked immunosorbent assay, as well as adhesion and migration assays. RESULTS: In patients with endometriosis, the expression of DcR3 and HIF-1α was found to be upregulated and correlated in ectopic endometrium. The expression of DcR3 served as an indicator of the severity of endometriosis. Hypoxia induced the expression of DcR3, which was regulated by HIF-1α and promoted migration and adhesion. CONCLUSION: DcR3 can be used as a clinical indicator to assess the severity of endometriosis. The hypoxic environment in endometriosis enhances disease progression by regulating DcR3 through HIF-1α.


Asunto(s)
Endometriosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Miembro 6b de Receptores del Factor de Necrosis Tumoral , Femenino , Humanos , Endometriosis/metabolismo , Endometrio/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células del Estroma/metabolismo , Miembro 6b de Receptores del Factor de Necrosis Tumoral/metabolismo
4.
Opt Express ; 32(2): 2786-2803, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297799

RESUMEN

Here, a scheme for a controllable nonreciprocal phonon laser is proposed in a hybrid photonic molecule system consisting of a whispering-gallery mode (WGM) optomechanical resonator and a χ(2)-nonlinear WGM resonator, by directionally quantum squeezing one of two coupled resonator modes. The directional quantum squeezing results in a chiral photon interaction between the resonators and a frequency shift of the squeezed resonator mode with respect to the unsqueezed bare mode. We show that the directional quantum squeezing can modify the effective optomechanical coupling in the optomechanical resonator, and analyze the impacts of driving direction and squeezing extent on the phonon laser action in detail. Our analytical and numerical results indicate that the controllable nonreciprocal phonon laser action can be effectively realized in this system. The proposed scheme uses an all-optical and chip-compatible approach without spinning resonators, which may be more beneficial for integrating and packaging of the system on a chip. Our proposal may provide a new route to realize integratable phonon devices for on-chip nonreciprocal phonon manipulations, which may be used in chiral quantum acoustics, topological phononics, and acoustical information processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA