Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4019, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740756

RESUMEN

Most reported thermal emitters to date employing photonic nanostructures to achieve narrow bandwidth feature the rainbow effect due to the steep dispersion of the involved high-Q resonances. In this work, we propose to realize thermal emissions with high temporal coherence but free from rainbow effect, by harnessing a novel flat band design within a large range of wavevectors. This feature is achieved by introducing geometric perturbations into a square lattice of high-index disks to double the period along one direction. As a result of the first Brillouin zone halving, the guided modes will be folded to the Γ point and interact with originally existing guided-mode resonances to form a flat band of dispersion with overall high Q. Despite the use of evaporated amorphous materials, we experimentally demonstrate a thermal emission with the linewidth of 23 nm at 5.144 µm within a wide range of output angles (from -17.5° to 17.5°).

2.
Micromachines (Basel) ; 15(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38675249

RESUMEN

Current optical tweezering techniques are actively employed in the manipulation of nanoparticles, e.g., biomedical cells. However, there is still huge room for improving the efficiency of manipulating multiple nanoparticles of the same composition but different shapes. In this study, we designed an array of high-index all-dielectric disk antennas, each with an asymmetric open slot for such applications. Compared with the plasmonic counterparts, this all-dielectric metasurface has no dissipation loss and, thus, circumvents the Joule heating problem of plasmonic antennas. Furthermore, the asymmetry-induced excitation of quasi-bound states in continuum (QBIC) mode with a low-power intensity (1 mW/µm2) incidence imposes an optical gradient force of -0.31 pN on 8 nm radius nanospheres, which is four orders of magnitude stronger than that provided by the Fano resonance in plasmonic antenna arrays, and three orders of magnitude stronger than that by the Mie resonance in the same metasurface without any slot, respectively. This asymmetry also leads to the generation of large optical moments. At the QBIC resonance wavelength, a value of 88.3 pN-nm will act on the nanorods to generate a rotational force along the direction within the disk surface but perpendicular to the slot. This will allow only nanospheres but prevent the nanorods from accurately entering into the slots, realizing effective sieving between the nanoparticles of the two shapes.

3.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38676096

RESUMEN

We propose and study a nanoscale strong coupling effect between metamaterials and polymer molecular vibrations using metallic split-ring resonators (SRRs). Specifically, we first provided a numerical investigation of the SRR design, which was followed by an experimental demonstration of strong coupling between mid-infrared magnetic dipole resonance supported by the SRRs fabricated on a calcium fluoride substrate and polymethyl methacrylate molecular vibrations at 1730 cm-1. Characterized by the anti-crossing feature and spectral splitting behaviors in the transmission spectra, these results demonstrate efficient nanoscale manipulation of light-matter interactions between phonon vibrations and metamaterials.

4.
Opt Express ; 32(3): 4720-4727, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297666

RESUMEN

High-Q resonances, especially those with high spectral tunability and large robustness of the Q factors, are always sought in photonic research for enhanced light-matter interactions. In this work, by rotating the 1D ridge grating on a slab waveguide in both the clockwise and counterclockwise directions by a certain angle θ, we show that the original subwavelength lattice can be converted into waveguide moiré gratings (WMGs), with the period increased to a larger value determined by the value of θ. These period-increasing perturbations will cause the First Brillouin Zone (FBZ) of the 1D grating to shrink, and thus convert the non-radiating guided modes with the dispersion band below the light line into quasi-guided modes (QGMs) above the light line, which can be accessed by free space radiations. We present the numerically calculated dispersion band and the Q-values for the QGMs supported by the WMGs with θ = 60°, and demonstrate that high-Q resonances can be achieved in a wide region of the energy-momentum space with the Q-values exhibiting large robustness over wavevectors. As an example of application, we show that the QGMs in the WMGs can be exploited to produce quite high optical gradient forces at different wavenumbers or wavelengths. Our results show that the QGMs supported by the WMGs work as a new type of high-Q resonances and may find prospective applications in various photonic systems.

5.
Nano Lett ; 24(2): 764-769, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166141

RESUMEN

Thermal emissions with high coherence, although not as high as those of lasers, still play a crucial role in many practical applications. In this work, by exploiting the geometric perturbation-induced optical lattice tripling and the associated Brillion zone folding effect, we propose and investigate thermal emissions in the mid-infrared with simultaneous high temporal and spatial coherence. In contrast with the case of period-doubling perturbation in our previous work, the steeper part of the guided mode dispersion band will be folded to the high-symmetry Γ point in the ternary grating. In this case, a specific emission wavelength corresponds to only a very small range of wavevectors. Consequently, apart from the high temporal coherence characterized by an experimental bandwidth around 30 nm, the achieved thermal emissions also feature ultrahigh spatial coherence. Calculations show that at the thermal emission wavelengths in the mid-infrared, the spatial coherence length can easily reach up to mm scale.

6.
Beilstein J Nanotechnol ; 14: 674-682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284552

RESUMEN

Light can exert radiation pressure on any object it encounters, and the resulting optical force can be used to manipulate particles at the micro- or nanoscale. In this work, we present a detailed comparison through numerical simulations of the optical forces that can be exerted on polystyrene spheres of the same diameter. The spheres are placed within the confined fields of three optical resonances supported by all-dielectric nanostructure arrays, including toroidal dipole (TD), anapoles, and quasi-bound states in continuum (quasi-BIC) resonances. By elaborately designing the geometry of a slotted-disk array, three different resonances can be supported, which are verified by the multipole decomposition analysis of the scattering power spectrum. Our numerical results show that the quasi-BIC resonance can produce a larger optical gradient force, which is about three orders of magnitude higher than those generated from the other two resonances. The large contrast in the optical forces generated with these resonances is attributed to a higher electromagnetic field enhancement provided by the quasi-BIC. These results suggest that the quasi-BIC resonance is preferred when one employs all-dielectric nanostructure arrays for the trapping and manipulation of nanoparticles by optical forces. It is important to use low-power lasers to achieve efficient trapping and avoid any harmful heating effects.

7.
Opt Express ; 31(12): 20338-20344, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381430

RESUMEN

The development of narrow-band thermal emitters operating at mid-infrared (MIR) wavelengths is vital in numerous research fields. However, the previously reported results obtained with metallic metamaterials were not successful in achieving narrow bandwidths in the MIR region, which suggests low temporal coherence of the obtained thermal emissions. In this work, we demonstrate a new design strategy to realize this target by employing the bound state in the continuum (BIC) modes of the Fabry-Perot (FP) type. When a disk array of high-index dielectric supporting Mie resonances is separated from a highly reflective substrate by a low refractive index spacer layer with appropriate thickness, the destructive interference between the disk array and its mirror with respect to the substrate leads to the formation of FP-type BIC. Quasi-BIC resonances with ultra-high Q-factor (>103) are achievable by engineering the thickness of the buffer layer. This strategy is exemplified by an efficient thermal emitter operating at a wavelength of 4.587 µm with the on-resonance emissivity of near-unity and the full-width at half-maximum (FWHM) less than 5 nm even along with consideration of metal substrate dissipation. The new thermal radiation source proposed in this work offers ultra-narrow bandwidth and high temporal coherence along with the economic advantages required for practical applications, compared to those infrared sources made from III-V semiconductors.

8.
Opt Express ; 31(6): 10947-10954, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157629

RESUMEN

Using photonic structures resonating at the characteristic absorption frequency of the target molecules is a widely-adopted approach to enhance the absorption and improve the sensitivity in many spectral regions. Unfortunately, the requirement of accurate spectral matching poses a big challenge for the structure fabrication, while active tuning of the resonance for a given structure using external means like the electric gating significantly complicates the system. In this work, we propose to circumvent the problem by making use of quasi-guided modes which feature both ultra-high Q factors and wavevector-dependent resonances over a large operating bandwidth. These modes are supported in a distorted photonic lattice, whose band structure is formed above the light line due to the band-folding effect. The advantage and flexibility of this scheme in terahertz sensing are elucidated and exemplified by using a compound grating structure on a silicon slab waveguide to achieve the detection of a nanometer scale α-lactose film. The spectral matching between the leaky resonance and the α-lactose absorption frequency at 529.2 GHz by changing the incident angle is demonstrated using a flawed structure which exhibits a detuned resonance at normal incidence. Based on the high dependence of the transmittance at the resonance on the thickness of α-lactose, our results show it is possible to achieve an exclusive detection of α-lactose with the effective sensing of thickness as small as 0.5 nm.

9.
Beilstein J Nanotechnol ; 14: 322-328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925612

RESUMEN

We elucidate that guided modes supported by a regular photonic crystal slab structure composed of a square lattice of air holes in a silicon slab will transition into quasi-guided (leaky) modes when the radius of every second column of air holes is changed slightly. This intentional geometric perturbation will lead to a doubling of the period in one direction and the corresponding shrinkage of the first Brillouin zone. Because of the translational symmetry in the k-space, leaky waves inheriting the spatial dispersion of the original guided modes, which do not interact with external radiation, will appear with the dispersion curves above the light cone. Our results show that ultrahigh Q-factor resonances with large operating bandwidth can be achieved. Interestingly, the perturbation in only one direction of the photonic lattice will lead to an in-plane wave number-dependent resonance characteristic in both directions. Our numerical results demonstrate a local enhancement of the electric field magnitude by the order of 102, which is even more significant than those in most plasmonic structures. These quasi-guided modes with superior properties will provide a new platform for efficient light-matter interactions.

10.
Opt Lett ; 48(3): 620-623, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723547

RESUMEN

Achieving high-Q resonances in the THz frequency range is significant for applications such as sensors, filters, and emitters. A promising approach for obtaining such resonances is by using metamaterials. However, high-Q resonances in THz metamaterials are usually limited by metallic radiation losses in the meta-atoms. In this Letter, we investigate both experimentally and numerically a complementary metallic disk-hole array (CMA) that uses the coupling between lattice resonances and Fabry-Pérot cavity resonances, and features in-substrate modes with experimentally obtained record breaking Q-factors of up to 750. To the best of our knowledge, this is the highest quality factor measured for free-space-coupled metallic metamaterial structure at THz frequencies.

11.
Appl Opt ; 61(20): 6086-6091, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36255850

RESUMEN

Relative humidity (RH) plays an important role in almost every industrial field. Thus, the detection of RH is of great significance in these fields. Terahertz (THz) waves are extremely sensitive to the changes in RH because water absorbs strongly in this electromagnetic band. In this paper, a RH sensor based on THz metasurfaces combined with polyvinyl alcohol (PVA) is proposed. Different from the conventional metasurface sensor, our sensor includes a PVA layer that is sandwiched between the metal structure and the substrate. The improved design is able to enhance the interaction between the electric field and the water molecules absorbed in the PVA layer, and the sensitivity of the humidity sensor can reach 0.34 GHz/%RH, which is more than twice that of the conventional metasurface sensor. These results show that the proposed sensor can be used for the detection of RH with high reliability and high sensitivity, which open a new, to the best of our knowledge, avenue for RH sensing using THz spectroscopy.

12.
Nanoscale ; 14(2): 428-432, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34897351

RESUMEN

Efficient on-chip manipulation of photon spin is of crucial importance in developing future integrated nanophotonics as is electron spin in spintronics. The unidirectionality induced by the interaction between spin and orbital angular momenta suffers low efficiency in classical macroscopic optics, while it can be highly enhanced on subwavelength scales with suitable architectures. Here we propose and demonstrate a spin-sorting achiral split-ring coupler to unidirectionally excite dielectric-loaded plasmonic modes in two independent waveguides. We found experimentally that the impinging light with different spin can be selectively directed into one of two branching plasmonic waveguides with a directionality contrast up to 15.1 dB. A circular-helicity-independent compact beam splitter is also realized demonstrating great potential in designing complex interconnect nanocircuits. The illustrated approach is believed to open new avenues for developing advanced optical functionalities with a flexible degree of freedom in manipulation of on-chip chirality within chiral optics.

13.
Opt Lett ; 46(22): 5675-5678, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780434

RESUMEN

On-chip controlling of photon spin is essential in developing future integrated nanophotonics with complex functionalities. Here we propose and demonstrate a robust spin-sorting nanocircuit, which consists of a spin-orbit coupler (i.e., combined nanoring and nanodisk) and an L-shaped dielectric-loaded surface plasmon (DLSPs) waveguide. The nanocircuit with optimized geometric parameters is shown to be capable of unidirectionally exciting and routing a DLSP mode along an independent waveguide. We found experimentally that the proposed device possesses an average insertion loss (extinction ratio) of 0.13 dB (14.8 dB) under complete circularly polarized incidence with opposite spin, which is in good agreement with theoretical calculations. The proposed spin-selective scheme may pave the way for applications in the manipulation of chirality with a flexible degree of freedom.

14.
Nanotechnology ; 32(31)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33873161

RESUMEN

A circular polarizer is proposed based on a single layered metasurface. This metasurface circular polarizer is composed of L-shaped nanoholes etched on the silver film. The L-shaped nanoholes are rotational symmetric, and the special symmetric structure determines the polarization selection transmission of the metasurface. The theoretical analysis elaborates the design process of the metasurface circular polarizer. The proposed metasurface circular polarizers have good polarization selective transmittance, and more interestingly, they take on the opposite circular dichroism at different wavebands. The numerical simulations and experiment measurement confirm the circular dichroism of the proposed circular polarizers. The compact design, ultrathin thickness and available performance can expand the applications of the metasurface circular polarizers in the integrated optics.

15.
Opt Lett ; 46(3): 524-527, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528400

RESUMEN

We present a new, to the best of our knowledge, scheme of realizing all-optical switching by exploiting the phenomenon of the bound state in the continuum (BIC) supported by an array of slotted silicon disks. The air slot in an individual silicon disk works as a void antenna and can then help to excite the quasi-BIC (QBIC) mode by a linearly polarized plane wave. Thanks to the high quality factor of the QBIC resonance and the associated large local electric field enhancement, the self-switching effect is quite pronounced, and a laser power intensity level less than 1KW/cm2 is required to achieve a change of transmittance from 0 to above 65%.

16.
Nanomaterials (Basel) ; 10(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708603

RESUMEN

A Bragg-mirror-assisted terahertz (THz) high-contrast and broadband plasmonic interferometer is proposed and theoretically investigated for potential sensing applications. The central microslit couples the incident THz wave into unidirectional surface plasmon polaritons (SPPs) waves travelling to the bilateral Bragg gratings, where they are totally reflected over a wide wavelength range back towards the microslit. The properties of interference between the SPPs waves and transmitted THz wave are highly dependent on the surrounding material, offering a flexible approach for the realization of refractive index (RI) detection. The systematic study reveals that the proposed interferometric sensor possesses wavelength sensitivity as high as 167 µm RIU-1 (RIU: RI unit). More importantly, based on the intensity interrogation method, an ultrahigh Figure-of-Merit (FoM) of 18,750% RIU-1, surpassing that of previous plasmonic sensors, is obtained due to the high-contrast of interference pattern. The results also demonstrated that the proposed sensors are also quite robust against the oblique illumination. It is foreseen the proposed configuration may open up new horizons in developing THz plasmonic sensing platforms and next-generation integrated THz circuits.

17.
Sci Rep ; 10(1): 3712, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111980

RESUMEN

Unambiguous identification of trace amounts of biochemical molecules in a complex background using terahertz spectroscopy is extremely challenging owing to the extremely small absorption cross sections of these molecules in the terahertz regime. Herein, we numerically propose a terahertz nonresonant nano-slits structure that serves as a powerful sensor. The structure exhibits strongly enhanced electric field in the slits (five orders of magnitude), as well as high transmittance over an extra-wide frequency range that covers the characteristic frequencies of most molecules. Fingerprint features of lactose and maltose are clearly detected using this slits structure, indicating that this structure can be used to identify different saccharides without changing its geometrical parameters. The absorption signal strengths of lactose and maltose with a thickness of 200 nm are strongly enhanced by factors of 52.5 and 33.4, respectively. This structure is very sensitive to thin thickness and is suitable for the detection of trace sample, and the lactose thickness can be predicted on the basis of absorption signal strength when the thickness is less than 250 nm. The detection of a mixture of lactose and maltose indicates that this structure can also achieve multi-sensing which is very difficult to realize by using the resonant structures.

18.
Opt Express ; 27(11): 16071-16079, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163793

RESUMEN

In order to solve the problem of low sensitivity and poor selectivity in biochemical sensing using terahertz technology, a new sensing scheme based on photonic crystal cavity structure is proposed. It is composed of two identical photonic crystal slabs, each of which consists of a square lattice of silicon-based cylindrical pillars on a silicon substrate. The geometric parameters of the cavity are optimized to obtain a guided resonance peak at 529.2 GHz with a high quality factor of 529. The detected object is located in the middle of cavity where the electric field is strongly localized and confined. The effective detection of lactose with only a few microns thick is taken as an example to demonstrate the sensing performance of this cavity. A distinct decrease in transmittance at resonance peak is observed. The sensitivity using our proposed cavity is 31 times higher than that of using a substrate. Moreover, the selectivity of this photonic crystal cavity for the target is also verified by using fructose as the non-target. These results show that the photonic crystal cavity has potential to be applied for fingerprint detection with high sensitivity as well as selectivity in terahertz sensing.

19.
Opt Express ; 27(6): 9032-9039, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052712

RESUMEN

Hybridization induced transparency (HIT) resulting from the coupling between the material absorption resonance and the artificial structure (metamaterial) resonance provides an effective means of enhancing the sensitivity in the terahertz spectroscopic technique-based sensing applications. However, the application of this method is limited by the versatility to the samples with different volumes, because the samples usually have a refractive index larger than unity and their presence with different thicknesses will lead to a shift of the structure resonance, mismatching the material absorption. In this work, we demonstrate that by using InSb coupled rod structures, whose electromagnetic response in the terahertz band can be easily controlled by using ambient parameters like the temperature or magnetic field, the HIT effect can be easily tuned so that without the needs to change the rod geometry, one can realize efficient terahertz sensing with different sample thickness.

20.
Appl Opt ; 58(3): 540-544, 2019 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-30694237

RESUMEN

In this paper, a planar comb-shaped antenna array for terahertz sensing based on the excitation of spoof surface plasmon modes is proposed. The structure is constructed by an array of three periodic rectangular grooves perforated through metal stripes on top of a silicon substrate. The effective detection of lactose is given as an example to demonstrate the ability of this structure to enhance detection sensitivity. In transmission mode, the sensing signal of lactose using the antenna array was 7.6 times larger than that of using a silicon substrate. In reflection mode, the sensing signal of lactose increased almost 13 times using our proposed antenna array compared to that of using a silicon substrate, exhibiting high sensitivity in terahertz sensing. Further, lactose thickness could be predicted based on the reflectance at the peak using our proposed structure. Our results indicate that the proposed structure has great potentiality in the field of biological and chemical sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...