Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 8(6): 775-794, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35756387

RESUMEN

Dependence on lithium-ion batteries for automobile applications is rapidly increasing. The emerging use of anionic redox can boost the energy density of batteries, but the fundamental origin of anionic redox is still under debate. Moreover, to realize anionic redox, many reported electrode materials rely on manganese ions through π-type interactions with oxygen. Here, through a systematic experimental and theoretical study on a binary system of Li3NbO4-NiO, we demonstrate for the first time the unexpectedly large contribution of oxygen to charge compensation for electrochemical oxidation in Ni-based materials. In general, for Ni-based materials, e.g., LiNiO2, charge compensation is achieved mainly by Ni oxidation, with a lower contribution from oxygen. In contrast, for Li3NbO4-NiO, oxygen-based charge compensation is triggered by structural disordering and σ-type interactions with nickel ions, which are associated with a unique environment for oxygen, i.e., a linear Ni-O-Ni configuration in the disordered system. Reversible anionic redox with a small hysteretic behavior was achieved for LiNi2/3Nb1/3O2 with a cation-disordered Li/Ni arrangement. Further Li enrichment in the structure destabilizes anionic redox and leads to irreversible oxygen loss due to the disappearance of the linear Ni-O-Ni configuration and the formation of unstable Ni ions with high oxidation states. On the basis of these results, we discuss the possibility of using σ-type interactions for anionic redox to design advanced electrode materials for high-energy lithium-ion batteries.

2.
Phys Chem Chem Phys ; 17(5): 3783-95, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25559330

RESUMEN

Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

3.
ChemSusChem ; 5(12): 2307-11, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23169703

RESUMEN

Rice to power: Amylopectin is a major component of agricultural products such as corn, potato, and rice. Silicon-graphite electrodes are prepared by using slurries of these polysaccharides as binders. Compared to the conventionally used binder PVdF, they exhibit drastically improved electrode performance in Li cells. The improved performance is coupled to the degree of branching.


Asunto(s)
Productos Agrícolas/química , Suministros de Energía Eléctrica , Grafito/química , Litio/química , Polisacáridos/química , Silicio/química , Amilopectina/química , Amilopectina/aislamiento & purificación , Amilosa/química , Amilosa/aislamiento & purificación , Electrodos , Glucógeno/química , Glucógeno/aislamiento & purificación , Polisacáridos/aislamiento & purificación
4.
J Nanosci Nanotechnol ; 7(11): 4037-40, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18047113

RESUMEN

Single phase LiCoPO4 nanoparticles were synthesized by solid-state reaction. LiCoPO4/Li batteries were fabricated in an argon-filled glove box, and their electrochemical properties were analyzed by cyclic voltammetry (CV) and charge-discharge tests. The structural performance of LiCoPO4 nanoparticles was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD result demonstrated that LiCoPO4 nanoparticles had an orthorhombic olivine-type structure with a space group of Pmnb. The charge-discharge tests indicated that the initial discharge capacity and coulombic efficiency of LiCoPO4/Li batteries were 110 mA h/g and 48% in cut-off voltage range of 3.0-5.3 V, 90 mA h/g and 54% in cut-off voltage range of 3.0-5.1 V, 70 mA h/g and 60% in cut-off voltage range of 3.0-5.0 V, respectively. After 30 cycles, the coulombic efficiency was 78% for 3.0-5.3 V, 88% for 3.0-5.1 V, 91% for 3.0-5.0 V, respectively. These results indicated that the coulombic efficiency of LiCoPO4/Li battery increased upon cycling and upon decreasing in charge upper limit voltage, respectively.


Asunto(s)
Cobalto/química , Suministros de Energía Eléctrica , Electroquímica/instrumentación , Litio/química , Nanoestructuras/química , Nanotecnología/instrumentación , Óxidos/química , Fosfatos/química , Electroquímica/métodos , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA