Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 256(Pt 2): 128396, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035961

RESUMEN

The increasing global awareness of environmental issues has led to a growing interest in research on cellulose-based film. However, several limitations hinder their development and industrial application, such as hydrophilicity, inadequate mechanical properties and barrier properties, and a lack of activity. This study aimed to create a sustainable and hydrophobic high-performance all-green pineapple peel cellulose nanocomposite film for food packaging by incorporating natural carnauba wax and cellulose nanofibers (CNF) into a pineapple peel cellulose matrix. The results showed that adding carnauba wax to the cellulose matrix converted the surface wettability of the cellulose-based film from hydrophilic to hydrophobic (water contact angle over 100). Additionally, the film exhibited ultraviolet resistance and antioxidation properties. The incorporation of CNF further improved the barrier properties, mechanical properties, and thermal stability of the cellulose nanocomposite film. In applied experiments, the cellulose nanocomposite film delayed post-harvest deterioration and maintained storage quality of cherry tomatoes. Importantly, the cellulose nanocomposite film could be degraded in soil within 30 days. It can be concluded that the cellulose nanocomposite film has great potential to alleviate the environmental problems and human health problems caused by non-degradable petroleum-based plastic packaging.


Asunto(s)
Ananas , Nanocompuestos , Nanofibras , Humanos , Celulosa/química , Embalaje de Alimentos/métodos , Nanocompuestos/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras/química
2.
Carbohydr Polym ; 326: 121639, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142104

RESUMEN

A novel hydrogel humidity sensor was developed using acrylic acid/bagasse cellulose (AA/BC) porous hydrogel triggered by cold plasma (CP) combining graphene oxide (GO) and embedding citral for antibacterial and intelligent fruit preservation. Results showed that both GO and citral were loaded in AA/BC and had strong hydrogen bond interaction with hydrogel. Acrylic acid/bagasse cellulose/graphene oxide (AA/BC/GO) showed the highest humidity response when the compound concentration of GO was 1.0 mg/mL and the test frequency was 1 kHz, and exhibited high electrical conductivity (-2.6 mS/cm). In addition, in continuous and cyclic relative humidity (RH) tests, the response time of AA/BC/GO from 33.70 % RH to 75.30 % RH was about 177.4 s and the recovery time was about 150.6 s, with excellent sensitivity and durability. The sensors also revealed remarkable antibacterial properties against Escherichia coli and Staphylococcus aureus, among which acrylic acid/bagasse cellulose/graphene oxide-citral (AA/BC/GO-C) was the most prominent, and could extend the shelf life of mangoes for about 8 days. By intuitively judging the appearances and total color difference (TCD) of the hydrogel sensors, it could play the role of intelligent preservation by connecting their water absorption and the release of citral. Therefore, this work provided innovative strategies for the application of hydrogel sensors in food preservation.


Asunto(s)
Celulosa , Frutas , Humedad , Porosidad , Antibacterianos/farmacología , Materiales Biocompatibles , Escherichia coli , Hidrogeles/farmacología
3.
ACS Appl Mater Interfaces ; 15(16): 20358-20371, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37041109

RESUMEN

In this study, double cross-linked acrylic acid/bagasse cellulose (AA/BC) porous hydrogels were first prepared using cold plasma (CP) technology instead of chemical initiators. The structure and properties of porous hydrogels, as well as the controlled release and bacteriostatic application as functional carriers, were investigated. Results showed that a novel double cross-linked hydrogel had been successfully synthesized by utilizing •OH and H+ produced during plasma discharge. The acrylic acid (AA) monomers were successfully grafted onto the main chains of bagasse cellulose (BC), forming a porous three-dimensional network structure. The AA/BC porous hydrogels showed excellent swelling levels and intelligent responses. The release of citral in hydrogel inclusion compounds embedded with citral was controlled by adjusting the pH, and the slow release period was about 2 days. The inclusion compounds presented strong bacteriostatic effects against Escherichia coli and Staphylococcus aureus, extending the shelf life of fruits for about 4 days. Therefore, it can be concluded that CP technology is considered to be an efficient and environmental-friendly initiation technology for preparing hydrogels. The potential application of hydrogel inclusion compounds in the food field is expanded.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Preparaciones de Acción Retardada/química , Porosidad , Hidrogeles/farmacología , Hidrogeles/química , Celulosa/farmacología , Celulosa/química , Concentración de Iones de Hidrógeno
4.
Crit Rev Food Sci Nutr ; 63(20): 4450-4466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34766864

RESUMEN

Natural edible films have recently gained a lot of interests in future food packaging. Polysaccharides and proteins in edible materials are not toxic and widely available, which have been confirmed as sustainable and green materials used for packaging films due to their good film-forming abilities. However, polysaccharides and proteins are hydrophilic in nature, they exhibit some undesirable material properties. Cold plasma (CP), as an innovative and highly efficient technology, has been introduced to improve the performance of polysaccharides and proteins-based films. This review mainly presents the basic information of polysaccharides and proteins-based films, principles of CP modified biopolymer films, and the effects of CP on the structural changes including surface morphology, surface composition, and bulk modification, and properties including wettability, mechanical properties, barrier properties, and thermal properties of polysaccharides, proteins, and polysaccharide/protein composite-based films. It is concluded that the CP modified performances are mainly depending on the polysaccharides and proteins raw materials, CP generation types and treatment conditions. The existing difficulties and future trends are also discussed. Despite natural materials currently not fully substitute for traditional plastic materials, CP has exhibited an effective solution to shape the future of natural materials for food packaging.


Asunto(s)
Embalaje de Alimentos , Gases em Plasma , Polisacáridos/química , Biopolímeros , Interacciones Hidrofóbicas e Hidrofílicas
5.
Food Res Int ; 156: 111300, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651060

RESUMEN

Cellulose has attracted high attention due to its advantages of abundant resources, renewable and biodegradable. Modification of natural plant cellulose has become a hot topic worldwide. Conventional chemical modification methods commonly cause great damage to the environment. The current review presents the effects of innovative, eco-friendly and sustainable nonthermal processing technologies on cellulose structure and properties. Typical techniques include high pressure processing, cold plasma, ultrasonic and irradiation treatment. Their superiorities in the modification of cellulose are highlighted, and the advantages and limitations of nonthermal processing technologies for plant cellulose modification are also discussed. Nonthermal processing technologies can improve cellulose functional properties by playing an important role in the chemical bonds of the molecular chains, crystalline regions or amorphous parts through energy or active particles generated in the process, or promoting the crosslinking and graft copolymerization of cellulose molecules. The development of modified cellulose functional materials will have wider applications.


Asunto(s)
Celulosa , Gases em Plasma , Celulosa/química , Fenómenos Químicos , Plantas , Ultrasonido
6.
Food Chem ; 374: 131675, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34883432

RESUMEN

Cellulose is a most abundant natural biopolymer, however, the strong hydrogen bonding system makes cellulose hard to dissolve, limiting its further applications. In this study, an innovative cold plasma (CP) technology was used to modify cellulose from sugarcane (Saccharum officinarum) bagasse pulp. Dissolution, structure, and surface chemistry of cellulose before and after CP treatment were investigated. Results showed that the dissolution rate of cellulose after different CP treatment time (3-12 min) and operating voltage (40-70 kV) was significantly improved. Roughness, even holes (CP treatment 9 min with 50 kV) and breakage (CP treatment 9 min with 70 kV) were observed on the surface. The crystallinity index decreased from 62.31% (control) to 60.88% (CP treatment 3 min with 50 kV). The hydrogen bonding force was weakened and the peak intensity of CO and CO stretching vibration groups were enhanced. Therefore, CP-modified cellulose may be applied more in future, such as biological films for food future packaging.


Asunto(s)
Gases em Plasma , Saccharum , Celulosa , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...