Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(9): pgad276, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693210

RESUMEN

The somatosensory-motor network (SMN) not only plays an important role in primary somatosensory and motor processing but is also central to many disorders. However, the SMN heterogeneity related to higher-order systems still remains unclear. Here, we investigated SMN heterogeneity from multiple perspectives. To characterize the SMN substructures in more detail, we used ultra-high-field functional MRI to delineate a finer-grained cortical parcellation containing 430 parcels that is more homogenous than the state-of-the-art parcellation. We personalized the new parcellation to account for individual differences and identified multiscale individual-specific brain structures. We found that the SMN subnetworks showed distinct resting-state functional connectivity (RSFC) patterns. The Hand subnetwork was central within the SMN and exhibited stronger RSFC with the attention systems than the other subnetworks, whereas the Tongue subnetwork exhibited stronger RSFC with the default systems. This two-fold differentiation was observed in the temporal ordering patterns within the SMN. Furthermore, we characterized how the distinct attention and default streams were carried forward into the functions of the SMN using dynamic causal modeling and identified two behavioral domains associated with this SMN fractionation using meta-analytic tools. Overall, our findings provided important insights into the heterogeneous SMN organization at the system level and suggested that the Hand subnetwork may be preferentially involved in exogenous processes, whereas the Tongue subnetwork may be more important in endogenous processes.

2.
Mikrochim Acta ; 189(8): 299, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35902480

RESUMEN

A facile and novel electrochemical sensing platform is reported for quercetin determination with MoS2 nanoflowers-3D graphene aerogel (3D MoS2-GA) nanocomposite as signal amplified material. The 3D MoS2-GA nanocomposite was synthesized through a two-step hydrothermal method, in which MoS2 nanoflowers were prepared in advance. Characterizations of 3D MoS2-GA were performed by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The 3D MoS2-GA-modified glassy carbon electrode (3D MoS2-GA/GCE) was used to investigate the electrochemical behaviors of quercetin with electrochemical parameters calculated, reaction mechanism discussed, and experimental conditions optimized. Notably, the redox peak current densities of quercetin on 3D MoS2-GA/GCE raised 5.14 and 6.40 times compared with those on a bare GCE. Furthermore, a novel electroanalytical approach was proposed for the sensitive determination of quercetin within the concentration range 0.01 ~ 5.0 µmol/L, accompanied by a low detection limit of 0.0026 µmol/L (at a working potential of 0.38 V vs. Ag/AgCl). The recovery for practical sample analysis ranges from 97.0 to 105%, and the relative standard deviation is less than 4.2%. This established method shows reliable performance in determination of quercetin in tablets and urine samples.


Asunto(s)
Grafito , Nanocompuestos , Técnicas Electroquímicas/métodos , Grafito/química , Molibdeno/química , Nanocompuestos/química , Quercetina/análisis
3.
Cereb Cortex ; 32(24): 5489-5502, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136999

RESUMEN

The frontoparietal network (FPN), including bilateral frontal eye field, inferior parietal sulcus, and supplementary motor area, has been linked to attention processing, including spatiotemporal and sensory modality domains. However, it is unclear whether FPN encodes representations of these domains that are generalizable across subdomains. We decomposed multivariate patterns of functional magnetic resonance imaging activity from 20 participants into domain-specific components and identified latent multivariate representations that generalized across subdomains. The 30 experimental conditions were organized into unimodal-bimodal and spatial-temporal models. We found that brain areas in the FPN, form the primary network that modulated during attention across domains. However, the activation patterns of areas within the FPN were reorganized according to the specific attentional demand, especially when pay attention to different sensory, suggesting distinct regional neural representations associated with specific attentional processes within FPN. In addition, there were also other domain-specific areas outside the FPN, such as the dorsolateral prefrontal cortex. Our conclusion is that, according to the results of the analysis of representation similarity, 2 types of activated brain regions, related to attention domain detailed information processing and general information processing, can be revealed.


Asunto(s)
Mapeo Encefálico , Lóbulo Frontal , Humanos , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Sensación , Cognición/fisiología , Imagen por Resonancia Magnética , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...