Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.124
Filtrar
1.
Cell Signal ; 122: 111330, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094673

RESUMEN

The WNT5B ligand regulates the non-canonical wingless-related integration site (WNT)-planar cell polarity (PCP) pathway. However, the detailed mechanism underlying the activity of WNT5B in the WNT-PCP pathway in non-small cell lung cancer (NSCLC) is unclear. In this study, we assessed the clinicopathological significance of WNT5B expression in NSCLC specimens. WNT5B-overexpression and -knockdown NSCLC cell lines were generated in vivo and in vitro, respectively. WNT5B overexpression in NSCLC specimens correlates with advanced tumor node metastasis (TNM) stage, lymph node metastasis, and poor prognosis in patients with NSCLC. Additionally, WNT5B promotes the malignant phenotype of NSCLC cells in vivo and in vitro. Interactions were identified among WNT5B, frizzled3 (FZD3), and disheveled3 (DVL3) in NSCLC cells, leading to the activation of WNT-PCP signaling. The FZD3 receptor initiates DVL3 recruitment to the membrane for phosphorylation in a WNT5B ligand-dependent manner and activates c-Jun N-terminal kinase (JNK) signaling via the small GTPase RAC1. Furthermore, the deletion of the DEP domain of DVL3 abrogated these effects. Overall, we demonstrated a novel signal transduction pathway in which WNT5B recruits DVL3 to the membrane via its DEP domain through interaction with FZD3 to promote RAC1-PCP-JNK signaling, providing a potential target for clinical intervention in NSCLC treatment.

2.
Chin Med J Pulm Crit Care Med ; 2(1): 48-55, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39170961

RESUMEN

Background: The impact of corticosteroids on humoral responses in coronavirus disease 2019 (COVID-19) survivors during the acute phase and subsequent 6-month period remains unknown. This study aimed to determine how the use of corticosteroids influences the initiation and duration of humoral responses in COVID-19 survivors 6 months after infection onset. Methods: We used kinetic antibody data from the lopinavir-ritonavir trial conducted at Jin Yin-Tan Hospital in January 2020, which involved adults hospitalized with severe COVID-19 (LOTUS, ChiCTR2000029308). Antibody samples were collected from 192 patients during hospitalization, and kinetic antibodies were monitored at all available time points after recruitment. Additionally, plasma samples were collected from 101 COVID-19 survivors for comprehensive humoral immune measurement at the half-year follow-up visit. The main focus was comparing the humoral responses between patients treated with systemic corticosteroid therapy and the non-corticosteroid group. Results: From illness onset to day 30, the median antibody titre areas under the receiver operating characteristic curve (AUCs) of nucleoprotein (N), spike protein (S), and receptor-binding domain (RBD) immunoglobulin G (IgG) were significantly lower in the corticosteroids group. The AUCs of N-, S-, and RBD-IgM as well as neutralizing antibodies (NAbs) were numerically lower in the corticosteroids group compared with the non-corticosteroid group. However, peak titres of N, S, RBD-IgM and -IgG and NAbs were not influenced by corticosteroids. During 6-month follow-up, we observed a delayed decline for most binding antibodies, except N-IgM (ß -0.05, 95% CI [-0.10, 0.00]) in the corticosteroids group, though not reaching statistical significance. No significant difference was observed for NAbs. However, for the half-year seropositive rate, corticosteroids significantly accelerated the decay of IgA and IgM but made no difference to N-, S-, and RBD-IgG or NAbs. Additionally, corticosteroids group showed a trend towards delayed viral clearance compared with the non-corticosteroid group, but the results were not statistically significant (adjusted hazard ratio 0.71, 95% CI 0.50-1.00; P = 0.0508). Conclusion: Our findings suggested that corticosteroid therapy was associated with impaired initiation of the antibody response but this did not compromise the peak titres of binding and neutralizing antibodies. Throughout the decay phase, from the acute phase to the half-year follow-up visit, short-term and low-dose corticosteroids did not significantly affect humoral responses, except for accelerating the waning of short-lived antibodies.

4.
World Neurosurg ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151692

RESUMEN

BACKGROUND: Inflammatory markers for the prognosis of acute ischemic stroke (AIS) with endovascular therapy remain unclear. The purpose of this study was to investigate the association between the Systemic Inflammatory Response Index (SIRI) and Neutrophil-to-Lymphocyte Ratio (NLR) with unfavorable functional outcomes at 90-day in individuals of AIS who underwent endovascular therapy. METHODS: 128 AIS patients who had endovascular therapy were enrolled from the Nanjing Stroke Registry between September 2019 and November 2022. Peripheral venous blood was collected from patients within 24 h of admission for information on the following parameters: neutrophil count, lymphocyte count, monocyte count. Then, the SIRI and NLR values were calculated, and the association among SIRI, NLR, and modified Rankin Scale (mRS) scores 90 days after endovascular therapy was examined via univariate and multivariate logistic analyses. ROC curves were utilized to determine the best threshold for SIRI and NLR in predicting negative neurological outcomes following endovascular treatment for patients with AIS. RESULTS: 128 participants were evaluated, among which 50% had unfavorable outcomes. Linear regression analysis showed that the best threshold for SIRI was >1.407 (OR = 1.265; 95% CI, 1.071-1.493; P = 0.006), and for NLR it was >5.347 (odds ratio; OR = 1.088; 95% confidence interval [CI], 1.007-1.175; P = 0.033). These results revealed NLR and SIRI as significant predictors of unfavorable outcomes at 90 days. The AUC for SIRI and NLR in predicting 90-day adverse outcomes was 0.643 and 0.609, respectively. CONCLUSIONS: Higher SIRI and NLR levels at admission may lead to unfavorable outcomes at 90 days for AIS patients with endovascular therapy.

5.
Lancet Glob Health ; 12(9): e1552-e1559, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151989

RESUMEN

Amphotericin B has long been crucial for treating many serious infectious diseases, such as invasive fungal infections and visceral leishmaniasis, particularly for patients who are immunocompromised, including those with advanced HIV infection. The conventional amphotericin B deoxycholate formulation has largely been replaced in high-income countries with liposomal amphotericin B (LAmB), which has many advantages, including lower rates of adverse events, such as nephrotoxicity and anaemia. Despite an evident need for LAmB in low-income and middle-income countries, where mortality from invasive fungal infections is still substantial, many low-income and middle-income countries still often use the amphotericin B deoxycholate formulation because of a small number of generic formulations and the high price of the originator LAmB. The pricing of LAmB is also highly variable between countries. Overcoming supply barriers through the availability of additional quality-assured, generic formulations of LAmB at accessible prices would substantially facilitate equitable access and have a substantial effect on mortality attributable to deadly fungal infections.


Asunto(s)
Anfotericina B , Antifúngicos , Humanos , Anfotericina B/economía , Antifúngicos/economía , Antifúngicos/provisión & distribución , Antifúngicos/uso terapéutico , Accesibilidad a los Servicios de Salud , Salud Global , Países en Desarrollo , Medicamentos Genéricos/economía , Medicamentos Genéricos/provisión & distribución
6.
Pest Manag Sci ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152725

RESUMEN

BACKGROUND: The striped stem borer (SSB, Chilo suppressalis) is one of the most destructive insect pests on rice. As a chewing insect, SSB larval feeding causes a dramatic increase in rice defense responses. However, the effects of oral secretions (OSs) during SSB feeding on rice defense remain largely unexplored. RESULTS: In this study, based on transcriptome analysis results, treatment with SSB OSs regulated the expression of genes involved in the plant defense-related pathways of calcium, mitogen-activated protein kinases, reactive oxygen species, jasmonic acid (JA), herbivore-induced plant volatiles (HIPVs), and protease inhibitors. Unsurprisingly, treatment with SSB OSs elicited the accumulation of JA and JA-isoleucine in rice. The defense mechanisms activated by the cascade not only induced the expression of trypsin inhibitors, inhibiting the normal growth of SSB larvae but also induced HIPVs emission, rendering rice attractive to a common larval parasitoid. High-throughput proteome sequencing of SSB OSs led to 534 proteins being identified and 343 proteins with two or more unique peptides being detected. CONCLUSION: The study demonstrates that SSB OSs trigger both direct and indirect defense mechanisms in rice, akin to the effects of SSB feeding. It identifies specific proteins in SSB OSs that may influence the interactions between SSB and rice during feeding, providing valuable insights for effectors research. © 2024 Society of Chemical Industry.

7.
Heliyon ; 10(15): e35449, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170175

RESUMEN

Foot-and-mouth disease virus (FMDV) 2C protein is a conserved non-structural protein and crucial for replication of the virus. In this study, FMDV 2C protein was prepared and the enzymatic activities were investigated in detail. The protein could digest ssDNA or ssRNA into a small fragment at about 10 nt, indicating that the protein has nuclease activity. But it did not show digestion to blunt-end dsDNA or dsRNA. The nuclease activity of 2C protein could be inhibited in 2 mM Zn2+ or Ca2+ while enhanced by Mg2+ or Mn2+. FMDV 2C protein exhibited unwinding activity to all the three kinds of dsDNA and dsRNA (5' protruded, 3' protruded, and blunt-end). The unwinding velocity to 5' protruded dsRNA was higher than to the blunt-end dsRNA. 2C protein only showed unwinding activity in high concentration of Mg2+, but no unwinding activity in physiological concentrations of Mg2+ and Ca2+, as well as in cell lysate. The 2C protein could catalyze two structured ssRNA to form double strand, thus it was proved to have RNA chaperone activity. The Mg2+ and ATP in different concentrations did not show promotion to the RNA chaperone activity. Finally, six mutant proteins (K116A, D160A, D170A, N207A, R226A, and F316A) were constructed and the enzymatic activities were analyzed. All the six mutations reduced the ATPase activity, D170A and F361A could inactivate the nuclease activity, while the N207A and F316A could inactivate the helicase activity. Our study provides a comprehensive understanding of the enzymatic activities of FMDV 2C protein.

8.
PLoS Pathog ; 20(8): e1012448, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146384

RESUMEN

The chemokine co-receptors CXCR4 and CCR5 mediate HIV entry and signal transduction necessary for viral infection. However, to date only the CCR5 antagonist maraviroc is approved for treating HIV-1 infection. Given that approximately 50% of late-stage HIV patients also develop CXCR4-tropic virus, clinical anti-HIV CXCR4 antagonists are needed. Here, we describe a novel allosteric CXCR4 antagonist TIQ-15 which inhibits CXCR4-tropic HIV-1 infection of primary and transformed CD4 T cells. TIQ-15 blocks HIV entry with an IC50 of 13 nM. TIQ-15 also inhibits SDF-1α/CXCR4-mediated cAMP production, cofilin activation, and chemotactic signaling. In addition, TIQ-15 induces CXCR4 receptor internalization without affecting the levels of the CD4 receptor, suggesting that TIQ-15 may act through a novel allosteric site on CXCR4 for blocking HIV entry. Furthermore, TIQ-15 did not inhibit VSV-G pseudotyped HIV-1 infection, demonstrating its specificity in blocking CXCR4-tropic virus entry, but not CXCR4-independent endocytosis or post-entry steps. When tested against a panel of clinical isolates, TIQ-15 showed potent inhibition against CXCR4-tropic and dual-tropic viruses, and moderate inhibition against CCR5-tropic isolates. This observation was followed by a co-dosing study with maraviroc, and TIQ-15 demonstrated synergistic activity. In summary, here we describe a novel HIV-1 entry inhibitor, TIQ-15, which potently inhibits CXCR4-tropic viruses while possessing low-level synergistic activities against CCR5-tropic viruses. TIQ-15 could potentially be co-dosed with the CCR5 inhibitor maraviroc to block viruses of mixed tropisms.

9.
Genes Dis ; 11(5): 101060, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38957707

RESUMEN

Protein lysine crotonylation (Kcr) is one conserved form of posttranslational modifications of proteins, which plays an important role in a series of cellular physiological and pathological processes. Lysine ε-amino groups are the primary sites of such modification, resulting in four-carbon planar lysine crotonylation that is structurally and functionally distinct from the acetylation of these residues. High levels of Kcr modifications have been identified on both histone and non-histone proteins. The present review offers an update on the research progression regarding protein Kcr modifications in biomedical contexts and provides a discussion of the mechanisms whereby Kcr modification governs a range of biological processes. In addition, given the importance of protein Kcr modification in disease onset and progression, the potential viability of Kcr regulators as therapeutic targets is elucidated.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38970458

RESUMEN

Freckle is a prevalent pigmentary dermatosis with an obvious hereditary component. Dozens of freckles risk loci have been discovered through research on multiple traits or other diseases, rather than as an independent trait. To discover novel variants associated with freckles, we performed GWAS and meta-analysis in 4813 Chinese individuals. We conducted GWAS and meta-analysis of two cohorts: 197 patients and 1603 controls (Cohort I), and 336 patients and 2677 controls (Cohort II), both from China. Then we performed linkage disequilibrium (LD) analysis, eQTL study, and enrichment analysis with association results for functional implications. Finally, we discovered 59 new SNPs and 13 novel susceptibility genes associated with freckles (Pmeta <5 × 10-8), which has enriched the genetic research on freckles.

11.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071380

RESUMEN

HIV-1 infection is initiated by the interaction between the gp120 subunit in the envelope (Env) trimer and the cellular receptor CD4 on host cells. This interaction induces substantial structural rearrangement of the Env trimer. Currently, static structural information for prefusion-closed trimers, CD4-bound prefusion-open trimers, and various antibody-bound trimers is available. However, dynamic features between these static states (e.g., transition structures) are not well understood. Here, we investigate the full transition pathway of a site specifically glycosylated Env trimer between prefusion-closed and CD4-bound-open conformations by collective molecular dynamics and single-molecule Förster resonance energy transfer (smFRET). Our investigations reveal and confirm important features of the transition pathway, including movement of variable loops to generate a glycan hole at the trimer apex and formation or rearrangements of α-helices and ß-strands. Notably, by comparing the transition pathway to known Env-structures, we uncover evidence for a transition intermediate, with four antibodies, Ab1303, Ab1573, b12, and DH851.3, recognizing this intermediate. Each of these four antibodies induce population shifts of Env to occupy a newly observed smFRET state: the "occluded-intermediate" state. We propose this occluded-intermediate state to be both a prevalent state of Env and an on-path conformation between prefusion-closed and CD4-bound-open states, previously overlooked in smFRET analyses.

12.
Molecules ; 29(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39064968

RESUMEN

Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.


Asunto(s)
Hemípteros , Repelentes de Insectos , Insecticidas , Myrtaceae , Aceites Volátiles , Animales , Aceites Volátiles/química , Aceites Volátiles/farmacología , Hemípteros/efectos de los fármacos , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Myrtaceae/química , Insecticidas/química , Insecticidas/farmacología , Citrus/química , Cromatografía de Gases y Espectrometría de Masas , Aceites de Plantas/química , Aceites de Plantas/farmacología
13.
Hum Reprod Update ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996087

RESUMEN

BACKGROUND: Monozygotic (MZ) twins are believed to arise from the fission of a single fertilized embryo at different stages. Monochorionic MZ twins, who share one chorion, originate from the splitting of the inner cell mass (ICM) within a single blastocyst. In the classic model for dichorionic MZ twins, the embryo splits before compaction, developing into two blastocysts. However, there are a growing number of ART cases where a single blastocyst transfer results in dichorionic MZ twins, indicating that embryo splitting may occur even after blastocyst formation. OBJECTIVE AND RATIONALE: For monochorionic MZ twins, we conducted a comprehensive analysis of the cellular mechanisms involved in ICM splitting, drawing from both ART cases and animal experiments. In addition, we critically re-examine the classic early splitting model for dichorionic MZ twins. We explore cellular mechanisms leading to two separated blastocysts in ART, potentially causing dichorionic MZ twins. SEARCH METHODS: Relevant studies including research articles, reviews, and conference papers were searched in the PubMed database. Cases of MZ twins from IVF clinics were found by using combinations of terms including 'monozygotic twins' with 'IVF case report', 'ART', 'single embryo transfer', or 'dichorionic'. The papers retrieved were categorized based on the implicated mechanisms or as those with unexplained mechanisms. Animal experiments relating to MZ twins were found using 'mouse embryo monozygotic twins', 'mouse 8-shaped hatching', 'zebrafish janus mutant', and 'nine-banded armadillo embryo', along with literature collected through day-to-day reading. The search was limited to articles in English, with no restrictions on publication date or species. OUTCOMES: For monochorionic MZ twins, ART cases and mouse experiments demonstrate evidence that a looser ICM in blastocysts has an increased chance of ICM separation. Physical forces facilitated by blastocoel formation or 8-shaped hatching are exerted on the ICM, resulting in monochorionic MZ twins. For dichorionic MZ twins, the classic model resembles artificial cloning of mouse embryos in vitro, requiring strictly controlled splitting forces, re-joining prevention, and proper aggregation, which allows the formation of two separate human blastocysts under physiological circumstances. In contrast, ART procedures involving the transfer of a single blastocysts after atypical hatching or vitrified-warmed cycles might lead to blastocyst separation. Differences in morphology, molecular mechanisms, and timing across various animal model systems for MZ twinning can impede this research field. As discussed in future directions, recent developments of innovative in vitro models of human embryos may offer promising avenues for providing fundamental novel insights into the cellular mechanisms of MZ twinning during human embryogenesis. WIDER IMPLICATIONS: Twin pregnancies pose high risks to both the fetuses and the mother. While single embryo transfer is commonly employed to prevent dizygotic twin pregnancies in ART, it cannot prevent the occurrence of MZ twins. Drawing from our understanding of the cellular mechanisms underlying monochorionic and dichorionic MZ twinning, along with insights into the genetic mechanisms, could enable improved prediction, prevention, and even intervention strategies during ART procedures. REGISTRAITON NUMBER: N/A.

14.
J Biol Chem ; 300(8): 107554, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002667

RESUMEN

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, also exhibits nuclear genomic localization and is involved in DNA damage signaling. In this study, we investigated the impact of cGAS crotonylation on the regulation of the DNA damage response, particularly homologous recombination repair, following exposure to ionizing radiation (IR). Lysine 254 of cGAS is constitutively crotonylated by the CREB-binding protein; however, IR-induced DNA damage triggers sirtuin 3 (SIRT3)-mediated decrotonylation. Lysine 254 decrotonylation decreased the DNA-binding affinity of cGAS and inhibited its interaction with PARP1, promoting homologous recombination repair. Moreover, SIRT3 suppression led to homologous recombination repair inhibition and markedly sensitized cancer cells to IR and DNA-damaging chemicals, highlighting SIRT3 as a potential target for cancer therapy. Overall, this study revealed the crucial role of cGAS crotonylation in the DNA damage response. Furthermore, we propose that modulating cGAS and SIRT3 activities could be potential strategies for cancer therapy.

15.
J Gastrointest Surg ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004213

RESUMEN

PURPOSE: This study aimed to investigate the clinical benefits of single-vessel transection Roux-en-Y (SR-Y) reconstruction after total gastrectomy. METHODS: A total of 194 patients with proximal gastric cancer were prospectively recruited at Fudan University Shanghai Cancer Center between January 2021 and September 2022. This study included 97 patients who underwent conventional Roux-en-Y reconstruction and 97 patients who underwent SR-Y reconstruction. Clinicopathologic characteristics, surgical outcomes, and postoperative complications were compared between the conventional and single-vessel transection groups. RESULTS: There were no significant differences in baseline characteristics between the 2 groups in terms of age (P = .882), gender (P = .595), body mass index (P = .683), tumor location (P = .568), TNM stage (P = .122), tumor size (P = .927), anemia (P = .756), neoadjuvant chemotherapy (P = .730), and surgical approach (P = .592). However, compared with the conventional group, the single-vessel transection group had a shorter operation time (162.5 ± 37.6 vs 178.5 ± 48.3 min, respectively; P = .011) and less intraoperative bleeding (167.2 ± 91.8 vs 207.8 ± 167.5 mL, respectively; P = .037) after complete reservation of the terminal jejunal vascular arches. Nevertheless, there were no significant differences in tensions in the jejunal mesentery, durations of peritoneal drainage, postoperative hospital stay durations, the number of lymph node dissections, and early complications between the 2 groups. CONCLUSION: SR-Y reconstruction can simplify surgical procedures, reduce operating time, and minimize intraoperative bleeding without increasing tensions in the jejunal mesentery or short-term complications. It is feasible and safe and worth further promotion in clinical practice.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39010755

RESUMEN

This study introduces the MKM_B model, an approach derived from the MKM model, designed to evaluate the biological effectiveness of Boron Neutron Capture Therapy (BNCT) in the face of challenges from varying microscopic boron distributions. The model introduces a boron compensation factor, allowing for the assessment of compound Biological Effectiveness (CBE) values for different boron distributions. Utilizing the TOPAS simulation platform, the lineal energy spectrum of particles in BNCT was simulated, and the sensitivity of the MKM_B model to parameter variations and the influence of cell size on the model were thoroughly investigated. The CBE values for 10B-boronphenylalanine (BPA) and 10B-sodium (BSH) were determined to be 3.70 and 1.75, respectively. These calculations were based on using the nucleus radius of 2.5 µm and the cell radius of 5 µm while considering a 50% surviving fraction. It was observed that as cell size decreased, the CBE values for both BPA and BSH increased. Additionally, the model parameter rd was identified as having the most significant impact on CBE, with other parameters showing moderate effects. The development of the MKM_B model enables the accurate prediction of CBE under different boron distributions in BNCT. This model offers a promising approach to optimize treatment planning by providing increased accuracy in biological effectiveness.

17.
Chem Asian J ; : e202400679, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073242

RESUMEN

Despite the rapid development of thermally activated delayed fluorescent (TADF) materials, developing organic light-emitting diodes (OLEDs) with small efficiency roll-off remains a formidable challenge. Herein, we have designed a TADF molecule (mClSFO) based on the spiro fluorene skeleton. The highly twisted structure and multiple charge-transfer channels effectively suppress aggregation-caused quenching (ACQ) and endow mClSFO with excellent exciton dynamic properties to reduce efficiency roll-off. Fast radiative rate (kr) and rapid reverse intersystem crossing (RISC) rate (kRISC) of 1.6 × 107 s-1 and 1.07 × 106 s-1, respectively, are obtained in mClSFO. As a result, OLEDs based on mClSFO obtain impressive maximum external quantum efficiency (EQEmax) exceeding 20% across a wide doping concentration range of 10-60 wt%. 30 wt% doped OLED exhibits an EQEmax of 23.1% with a small efficiency roll-off, maintaining an EQE of 18.6% at 1000 cd m-2. The small efficiency roll-off and low concentration dependence observed in the TADF emitter underscore its significant potential.

18.
Aging (Albany NY) ; 16(13): 10985-10996, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38954761

RESUMEN

Immunosenescence is a process of immune dysfunction that occurs along with aging. Many studies have focused on the changes of different lymphocyte subsets in diseases and immune aging. However, the fluctuation in the number and phenotype of lymphocyte subset caused by aging have not been comprehensively analyzed, especially the effects of new indicators such as PD-1 and Ki67 in peripheral blood have been rarely reported. We further investigated the humoral and cellular immune parameters of 150 healthy donors over 18 years old. Age was associated with decreased CD4+CD45RA+CD62L+ T cells, decreased CD4+CD45RA+CD31+ T cells, and increased memory CD4+ or CD8+ T cells, dominated by male CD8+ T cells. The loss of CD28 expression on T cells and the transverse trend of activated CD38 and HLA-DR were also related to the increased age. In addition, CD8+ T cells in men were more prominent in activation indicators, and the difference between the old and young groups was obvious. CD4+CD25+CD127- T cells percentage tended to decrease with age and did not differ significantly between gender. Interestingly, we found that age was positively associated with PD-1+ T cells and showed significant age-related variability in men. Similarly, the percentage of CD8+ki-67+ also showed an increasing trend, with significant differences between the young group and other elderly groups in males. Our findings can provide immunological clues for future aging research, offering new insights for clinical monitoring and prevention of certain diseases.


Asunto(s)
Linfocitos T CD8-positivos , Inmunosenescencia , Antígeno Ki-67 , Receptor de Muerte Celular Programada 1 , Humanos , Masculino , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T CD8-positivos/inmunología , Inmunosenescencia/inmunología , Femenino , Persona de Mediana Edad , Antígeno Ki-67/metabolismo , Adulto , Anciano , Envejecimiento/inmunología , Adulto Joven , Pueblo Asiatico , China , Voluntarios Sanos , Pueblos del Este de Asia
19.
Genes (Basel) ; 15(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062727

RESUMEN

The yield of sweet potato [Ipomoea batatas (L.) Lam] can be easily threatened by drought stress. Typically, early stages like the seedling stage and tuber-root expansion stage are more vulnerable to drought stress. In this study, a highly drought-tolerant sweet potato cultivar "WanSu 63" was subjected to drought stress at both the seedling stage (15 days after transplanting, 15 DAT) and the tuber-root expansion stage (45 DAT). Twenty-four cDNA libraries were constructed from leaf segments and root tissues at 15 and 45 DAT for Next-Generation Sequencing. A total of 663, 063, and 218 clean reads were obtained and then aligned to the reference genome with a total mapped ratio greater than 82.73%. A sum of 7119, 8811, 5463, and 930 differentially expressed genes were identified from leaves in 15 days (L15), roots in 15 days (R15), leaves in 45 days (L45), and roots in 45 days (R45), respectively, in drought stress versus control. It was found that genes encoding heat shock proteins, sporamin, LEA protein dehydrin, ABA signaling pathway protein gene NCED1, as well as a group of receptor-like protein kinases genes were enriched in differentially expressed genes. ABA content was significantly higher in drought-treated tissues than in the control. The sweet potato biomass declined sharply to nearly one-quarter after drought stress. In conclusion, this study is the first to identify the differentially expressed drought-responsive genes and signaling pathways in the leaves and roots of sweet potato at the seedling and root expansion stages. The results provide potential resources for drought resistance breeding of sweet potato.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Estrés Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Transducción de Señal/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Resistencia a la Sequía
20.
Aging Cell ; : e14229, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831635

RESUMEN

Idiopathic pulmonary fibrosis is a progressive and age-related disease that results from impaired lung repair following injury. Targeting senescent myofibroblasts with senolytic drugs attenuates pulmonary fibrosis, revealing a detrimental role of these cells in pulmonary fibrosis. The mechanisms underlying the occurrence and persistence of senescent myofibroblasts in fibrotic lung tissue require further clarification. In this study, we demonstrated that senescent myofibroblasts are resistant to apoptosis by upregulating the proapoptotic protein BAX and antiapoptotic protein BCL-2 and BCL-XL, leading to BAX inactivation. We further showed that high levels of inactive BAX-mediated minority mitochondrial outer membrane permeabilization (minority MOMP) promoted DNA damage and myofibroblasts senescence after insult by a sublethal stimulus. Intervention of minority MOMP via the inhibition of caspase activity by quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (QVD-OPH) or BAX knockdown significantly reduced DNA damage and ultimately delayed the progression of senescence. Moreover, the BAX activator BTSA1 selectively promoted the apoptosis of senescent myofibroblasts, as BTSA1-activated BAX converted minority MOMP to complete MOMP while not injuring other cells with low levels of BAX. Furthermore, therapeutic activation of BAX with BTSA1 effectively reduced the number of senescent myofibroblasts in the lung tissue and alleviated both reversible and irreversible pulmonary fibrosis. These findings advance the understanding of apoptosis resistance and cellular senescence mechanisms in senescent myofibroblasts in pulmonary fibrosis and demonstrate a novel senolytic drug for pulmonary fibrosis treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA