Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(49): e2212730119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459647

RESUMEN

In BaNiS2, a Dirac nodal line band structure exists within a two-dimensional Ni square lattice system, in which significant electronic correlation effects are anticipated. Using scanning tunneling microscopy (STM), we discover signs of correlated-electron behavior, namely electronic nematicity appearing as a pair of C2-symmetry striped patterns in the local density-of-states at ∼60 meV above the Fermi energy. In observations of quasiparticle interference, as well as identifying scattering between Dirac cones, we find that the striped patterns in real space stem from a lifting of degeneracy among electron pockets at the Brillouin zone boundary. We infer a momentum-dependent energy shift with d-form factor, which we model numerically within a density wave (DW) equation framework that considers spin-fluctuation-driven nematicity. This suggests an unusual mechanism driving the nematic instability, stemming from only a small perturbation to the Fermi surface, in a system with very low density of states at the Fermi energy. The Dirac points lie at nodes of the d-form factor and are almost unaffected by it. These results highlight BaNiS2 as a unique material in which Dirac electrons and symmetry-breaking electronic correlations coexist.


Asunto(s)
Electrónica , Electrones , Microscopía de Túnel de Rastreo , Movimiento (Física) , Células Fotorreceptoras Retinianas Conos
2.
Nat Commun ; 11(1): 5925, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230104

RESUMEN

Magnetic skyrmions were thought to be stabilised only in inversion-symmetry breaking structures, but skyrmion lattices were recently discovered in inversion symmetric Gd-based compounds, spurring questions of the stabilisation mechanism. A natural consequence of a recent theoretical proposal, a coupling between itinerant electrons and localised magnetic moments, is that the skyrmions are amenable to detection using even non-magnetic probes such as spectroscopic-imaging scanning tunnelling microscopy (SI-STM). Here SI-STM observations of GdRu2Si2 reveal patterns in the local density of states that indeed vary with the underlying magnetic structures. These patterns are qualitatively reproduced by model calculations which assume exchange coupling between itinerant electrons and localised moments. These findings provide a clue to understand the skyrmion formation mechanism in GdRu2Si2.

3.
ACS Nano ; 12(11): 10977-10983, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30335952

RESUMEN

One of the key challenges in condensed-matter physics is to establish a topological superconductor that hosts exotic Majorana fermions. Although various heterostructures consisting of conventional BCS (Bardeen-Cooper-Schrieffer) superconductors as well as doped topological insulators were intensively investigated, no conclusive evidence for Majorana fermions has been provided. This is mainly because of their very low superconducting transition temperatures ( Tc) and small superconducting-gap magnitude. Here, we report a possible realization of topological superconductivity at very high temperatures in a hybrid of Bi(110) ultrathin film and copper oxide superconductor Bi2Sr2CaCu2O8+δ (Bi2212). Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we found that three-bilayer-thick Bi(110) on Bi2212 exhibits a proximity-effect-induced s-wave energy gap as large as 7.5 meV which persists up to Tc of Bi2212 (85 K). The small Fermi energy and strong spin-orbit coupling of Bi(110), together with the large pairing gap and high Tc, make this system a prime candidate for exploring stable Majorana fermions at very high temperatures.

4.
Sci Adv ; 4(5): eaar6419, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29806028

RESUMEN

Unconventional superconductivity often competes or coexists with other electronic orders. In iron-based superconductors, a central issue has been the relationship between superconductivity and electronic nematicity, spontaneous breaking of the lattice rotational symmetry. Using spectroscopic-imaging scanning tunneling microscopy, we simultaneously investigated the electronic structure and the superconducting gap in FeSe1-x S x , where the nematicity diminishes above the nematic end point (NEP) at x = 0.17. The nematic band structure appears as anisotropic quasiparticle-interference patterns that gradually become isotropic with increasing x without anomalies at the NEP. By contrast, the superconducting gap, which is intact in the nematic phase, discontinuously shrinks above the NEP. This implies that the presence or absence of nematicity results in two distinct pairing states, whereas the pairing interaction is insensitive to the strength of nematicity.

5.
Proc Natl Acad Sci U S A ; 111(46): 16309-13, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25378706

RESUMEN

Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.

6.
ACS Nano ; 7(5): 4105-10, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23560470

RESUMEN

We demonstrate the controllable local manipulation of the Dirac surface state in a topological insulator, Bi2Te2Se, which has suppressed bulk carrier density. Using scanning tunneling microscopy/spectroscopy under magnetic fields, we observe Landau levels of the Dirac surface state in the conductance spectra. The Landau levels start to shift in their energy once the bias voltage between the tip and the sample exceeds a threshold value. The amount of shift depends on the history of bias ramping. As a result, conductance spectra show noticeable hysteresis, giving rise to a memory effect. The conductance images exhibit spatially inhomogeneous patterns which can also be controlled by the bias voltage in a reproducible way. On the basis of these observations, we argue that the memory effect is associated with the tip-induced local charging effect which is pinned by the defect-generated random potential. Our study opens up a new avenue to controlling the topological surface state.

7.
Nature ; 454(7208): 1062-3, 2008 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-18756245
8.
Phys Rev Lett ; 92(14): 147002, 2004 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-15089566

RESUMEN

The ultrasonic attenuation alpha of the highly anisotropic s-wave superconductor YNi2B2C has been measured for all the symmetrically independent elastic modes to explore the location of the zero superconducting gap region on the Fermi surface. The attenuation of the longitudinal mode shows a pronounced anisotropy in the superconducting state: While alpha shows a thermally activated behavior along [110] and [001] directions, it shows T-linear dependence along [100]. These results together with those for the transverse modes demonstrate the presence of point nodes or zero-gap regions along [100] and [010] directions. This is a clear demonstration of ultrasonic attenuation as a powerful probe for the structure of the anisotropic superconducting gap.

9.
J Am Chem Soc ; 124(41): 12275-8, 2002 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-12371870

RESUMEN

Single crystals of Na-doped Ca(2)CuO(2)Cl(2) have been grown for the first time by a flux method under high pressures of up to 5.5 GPa. By changing the Na-solubility limit through the applied pressure, the Na content x was successfully controlled without introducing appreciable compositional inhomogeneity within the millimeter-sized crystals. Structural and chemical characterization indicated that the crystals span the phase diagram continuously from the parent antiferromagnetic insulator to an underdoped high-temperature superconductor. Because of the well-defined cleavage plane and resulting high surface quality, these oxychloride single crystals will provide a unique opportunity to explore the electronic evolution of the high-temperature superconductors, using spectroscopic techniques such as scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...