Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 10(9)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34572703

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a multi-drug resistant and opportunistic pathogen. The emergence of new clones of MRSA in both healthcare settings and the community warrants serious attention and epidemiological surveillance. However, epidemiological data of MRSA isolates from Pakistan are limited. We performed a whole-genome-based comparative analysis of two (P10 and R46) MRSA strains isolated from two provinces of Pakistan to understand the genetic diversity, sequence type (ST), and distribution of virulence and antibiotic-resistance genes. The strains belong to ST113 and harbor the SCCmec type IV encoding mecA gene. Both the strains contain two plasmids, and three and two complete prophage sequences are present in P10 and R46, respectively. The specific antibiotic resistance determinants in P10 include two aminoglycoside-resistance genes, aph(3')-IIIa and aad(6), a streptothrin-resistance gene sat-4, a tetracycline-resistance gene tet(K), a mupirocin-resistance gene mupA, a point mutation in fusA conferring resistance to fusidic acid, and in strain R46 a specific plasmid associated gene ant(4')-Ib. The strains harbor many virulence factors common to MRSA. However, no Panton-Valentine leucocidin (lukF-PV/lukS-PV) or toxic shock syndrome toxin (tsst) genes were detected in any of the genomes. The phylogenetic relationship of P10 and R46 with other prevailing MRSA strains suggests that ST113 strains are closely related to ST8 strains and ST113 strains are a single-locus variant of ST8. These findings provide important information concerning the emerging MRSA clone ST113 in Pakistan and the sequenced strains can be used as reference strains for the comparative genomic analysis of other MRSA strains in Pakistan and ST113 strains globally.

2.
J Pak Med Assoc ; 66(9): 1132-1136, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27654734

RESUMEN

Background: Hard water is thought to play a key role in weakening of hair (not Hair Loss) and breakage especially when travelling is involved. In our community, commonly men do the travelling and complain more about hair problem which is why only young male individuals were included in this study. Materials and Methods: Water samples from different districts of KPK, Pakistan, were collected and their hardness values were estimated to find the water sample of maximum and minimum water hardness in order to know the maximum hardness hair would encounter in KPK, Pakistan. Samples from district Kohat had maximum hardness whereas minimum hardness was estimated in samples of district Peshawar. Water from district Kohat was considered as our sample water for the experimental group of hair. Hair samples were collected from 76 male individuals of district Peshawar, the area with least water hardness among the samples collected. Each hair sample was divided into two halves. One half was considered as experimental group and the other was considered as control group. The experimental group was treated with hard water of district Kohat for 10 minutes on alternate days, for 3 months. In a very similar way the control group was treated with de-ionized water. Tensile strength in term of "Stress" of both the experimental and control groups were measured using the universal testing machine and compared using paired t-test. Results and Conclusions: The standard deviations (SD) for hair treated with hard water and distilled water was 62.05 and 58.13 respectively and the mean values were 238.49 and 255.36 respectively. The results showed that the tensile strength of hair was significantly (p=0.001) reduced in hair treated with hard water as compared to hair treated with de-ionized water.


Asunto(s)
Cabello/química , Agua/química , Humanos , Masculino , Ensayo de Materiales , Pakistán , Resistencia a la Tracción
3.
Biomed Res Int ; 2015: 139580, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25705648

RESUMEN

Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.


Asunto(s)
Genoma Bacteriano/genética , Islas Genómicas/genética , Helicobacter pylori/genética , Estómago/microbiología , Virulencia/genética , ADN Bacteriano/genética , Variación Genética/genética , Genómica/métodos , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Humanos , Filogenia , Estómago/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...