Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36772352

RESUMEN

Since light fidelity (LiFi) and wireless fidelity (WiFi) do not interfere with one another, a LiFi/WiFi hybrid network may provide superior performance to existing wireless options. With many users and constant changes, a network can easily become overloaded, leading to slowdowns and fluctuations in data transfer speeds. Access point assignment (APA) is required with the increase of users, which can negatively impact the system performance and quality-of-service (QoS) due to mobility and line-of-sight (LOS) blockage. Many variables could influence the APA process; these variables are considered as criteria, such as the network capacity, the degree of blockage, the speed of the connected user, etc. Unlike conditional APA methods, recent studies have considered treating these variables as "evaluation criteria". Considering these criteria can offer better and more accurate results, eventually enhancing the APA process and QoS. However, the variety of these criteria, the conflict amongst them, their weights (importance), and priority have not been addressed so far. Moreover, treating the criteria equally might result in inaccurate outcomes. Therefore, to solve this issue, it is essential to investigate the impact of each criterion on the APA process. In this work, a multicriteria decision-making (MCDM) problem is formulated to determine a network-level selection for each user over a period of time The decision problem is modeled as a hierarchy that fragments a problem into a hierarchy of simple and small subproblems, and the selection of the AP network among various alternatives is a considered as an MCDM problem. Based on the previous works, we are not aware of any previous research attempts using MCDM methods in the LiFi research area for network selection. Therefore, this work proposes an access point assignment framework using an MCDM approach for users in a hybrid LiFi/WiFi network. The experiment was conducted based on four phases: Five criteria were identified and evaluated with eleven APs (alternatives). The outcome of this phase was used to build the decision matrix and an MCDM was developed and built based on user mobility and blockages with various scenarios using all the criteria; The analytic hierarchy process (AHP) was employed to identify the criterion of the subjective weights of each criterion and to determine the degree of importance supported by experts' judgement. Determining the weights in the AHP process considered various investigations, including the consistency ratio (CR) and the AHP consensus indicator, which is calculated using the rank-based maximum likelihood method (RGMM) and Shannon entropy techniques. The VIekriteri-Jumsko KOmpromisno Rangiranje (VIKOR) method is adopted in the selection of the optimal AP for the proper selection of whether a LiFi or WiFi AP must serve the users. The integrated AHP-VIKOR was effective for solving the APA and was the best solution based on using weighted criteria simultaneously. Moreover, the ranking outcomes of the developed integrated AHP-VIKOR approach were evaluated using sensitivity analysis. The result of this work takes the APA for hybrid LiFi networks to a new perspective.

2.
Sensors (Basel) ; 21(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34770615

RESUMEN

Cloud computing is an emerging paradigm that offers flexible and seamless services for users based on their needs, including user budget savings. However, the involvement of a vast number of cloud users has made the scheduling of users' tasks (i.e., cloudlets) a challenging issue in selecting suitable data centres, servers (hosts), and virtual machines (VMs). Cloudlet scheduling is an NP-complete problem that can be solved using various meta-heuristic algorithms, which are quite popular due to their effectiveness. Massive user tasks and rapid growth in cloud resources have become increasingly complex challenges; therefore, an efficient algorithm is necessary for allocating cloudlets efficiently to attain better execution times, resource utilisation, and waiting times. This paper proposes a cloudlet scheduling, locust inspired algorithm to reduce the average makespan and waiting time and to boost VM and server utilisation. The CloudSim toolkit was used to evaluate our algorithm's efficiency, and the obtained results revealed that our algorithm outperforms other state-of-the-art nature-inspired algorithms, improving the average makespan, waiting time, and resource utilisation.


Asunto(s)
Nube Computacional , Saltamontes , Algoritmos , Animales , Computadores , Heurística
3.
PLoS One ; 14(1): e0210310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682038

RESUMEN

The increasing demand for network applications, such as teleconferencing, multimedia messaging and mobile TV, which have diverse requirements, has resulted in the introduction of Long Term Evolution (LTE) by the Third Generation Partnership Project (3GPP). LTE networks implement resource allocation algorithms to distribute radio resource to satisfy the bandwidth and delay requirements of users. However, the scheduling algorithm problem of distributing radio resources to users is not well defined in the LTE standard and thus considerably affects transmission order. Furthermore, the existing radio resource algorithm suffers from performance degradation under prioritised conditions because of the minimum data rate used to determine the transmission order. In this work, a novel downlink resource allocation algorithm that uses quality of service (QoS) requirements and channel conditions to address performance degradation is proposed. The new algorithm is formulated as an optimisation problem where network resources are allocated according to users' priority, whereas the scheduling algorithm decides on the basis of users' channel status to satisfy the demands of QoS. Simulation is used to evaluate the performance of the proposed algorithm, and results demonstrate that it performs better than do all other algorithms according to the measured metrics.


Asunto(s)
Algoritmos , Medios de Comunicación/normas , Radio/normas , Medios de Comunicación/estadística & datos numéricos , Redes de Comunicación de Computadores , Simulación por Computador , Humanos , Modelos Teóricos , Multimedia , Radio/estadística & datos numéricos , Asignación de Recursos , Tecnología Inalámbrica
4.
Sensors (Basel) ; 18(2)2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29462884

RESUMEN

Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).

5.
Sensors (Basel) ; 17(6)2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28587187

RESUMEN

Mobile agent (MA), a part of the mobile computing paradigm, was recently proposed for data gathering in Wireless Sensor Networks (WSNs). The MA-based approach employs two algorithms: Single-agent Itinerary Planning (SIP) and Multi-mobile agent Itinerary Planning (MIP) for energy-efficient data gathering. The MIP was proposed to outperform the weakness of SIP by introducing distributed multi MAs to perform the data gathering task. Despite the advantages of MIP, finding the optimal number of distributed MAs and their itineraries are still regarded as critical issues. The existing MIP algorithms assume that the itinerary of the MA has to start and return back to the sink node. Moreover, each distributed MA has to carry the processing code (data aggregation code) to collect the sensory data and return back to the sink with the accumulated data. However, these assumptions have resulted in an increase in the number of MA's migration hops, which subsequently leads to an increase in energy and time consumption. In this paper, a spawn multi-mobile agent itinerary planning (SMIP) approach is proposed to mitigate the substantial increase in cost of energy and time used in the data gathering processes. The proposed approach is based on the agent spawning such that the main MA is able to spawn other MAs with different tasks assigned from the main MA. Extensive simulation experiments have been conducted to test the performance of the proposed approach against some selected MIP algorithms. The results show that the proposed SMIP outperforms the counterpart algorithms in terms of energy consumption and task delay (time), and improves the integrated energy-delay performance.

6.
PLoS One ; 12(1): e0170273, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28121992

RESUMEN

Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Seguridad Computacional , Tecnología Inalámbrica , Agresión , Redes de Comunicación de Computadores/economía , Redes de Comunicación de Computadores/organización & administración , Seguridad Computacional/economía , Simulación por Computador , Sistemas de Información Geográfica/economía , Programas Informáticos , Tecnología Inalámbrica/economía , Tecnología Inalámbrica/organización & administración
7.
PLoS One ; 12(1): e0167423, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28056020

RESUMEN

Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica/instrumentación , Algoritmos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...