Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet World ; 17(7): 1596-1602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39185037

RESUMEN

Background and Aim: The excessive use of antimicrobials in livestock farming leads to the emergence and dissemination of antimicrobial-resistant organisms. This study aimed to detect extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli genes in integrated poultry-fish farms in Bogor, Indonesia. Materials and Methods: A total of 256 samples were collected from six poultry-fish farms. One hundred and seventy-five chicken cloaca swabs, 60 fish skin swabs, six pond water samples, and 15 farmer's hand swabs. ESBL-producing E. coli was confirmed through double-disk diffusion. The specific primers and probe genes for quantitative polymerase chain reaction detection of ESBL-producing E. coli targeted blaTEM, blaCTX-M, blaSHV, and blaOXA-48 genes. Results: Among the 256 samples tested, 145 (56.6%) were positive for E. coli, and 67.6% (98/145) were identified as ESBL-producing E. coli. The most ESBL-producing E. coli isolates were obtained from chicken cloaca (78.3%, 72/92), followed by pond water (66.7%, 4/6), fish skin (47.6%, 20/42), and farmer's hand swabs (40%, 2/5). About 100% of the isolates carried the genes blaTEM and blaCTX-M, whereas 17.3% and 24.5% carried blaSHV and blaOXA-48, respectively. Conclusion: ESBL-producing E. coli genes were investigated in chicken cloaca, fish, pond water, and farmers' hands within an interconnected poultry-fish farming operation. The ESBL-producing E. coli in chickens can transfer resistant genes to aquatic environments. The transfer could harm other aquatic species and food chains, potentially threatening human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA