Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychologia ; 163: 108089, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34801518

RESUMEN

Studies in non-human animal models have revealed that in early development, the onset of visual input gates the critical period closure of some auditory functions. The study of rare individuals whose sight was restored after a period of congenital blindness offers the rare opportunity to assess whether early visual input is a prerequisite for the full development of auditory functions in humans as well. Here, we investigated whether a few months of delayed visual onset would affect the development of Auditory Brainstem Responses (ABRs). ABRs are widely used in the clinical practice to assess both functionality and development of the subcortical auditory pathway and, provide reliable data at the individual level. We collected Auditory Brainstem Responses from two case studies, young children (both having less than 5 years of age) who experienced a transient visual deprivation since birth due to congenital bilateral dense cataracts (BC), and who acquired sight at about two months of age. As controls, we tested 41 children (sighted controls, SC) with typical development, as well as two children who were treated (at about two months of age) for congenital monocular cataracts (MC). The SC group data served to predict, at the individual level, wave latencies of each BC and MC participant. Statistics were performed both at the single subject as well as at the group levels on latencies of main ABR waves (I, III, V and SN10). Results revealed delayed response latencies for both BC children compared with the SC group starting from the wave III. Conversely, no difference emerged between MC children and the SC group. These findings suggest that in case the onset of patterned visual input is delayed, the functional development of the subcortical auditory pathway lags behind typical developmental trajectories. Ultimately results are in favor of the presence of a crossmodal sensitive period in the human subcortical auditory system.


Asunto(s)
Vías Auditivas , Potenciales Evocados Auditivos del Tronco Encefálico , Animales , Umbral Auditivo/fisiología , Preescolar , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Audición , Humanos , Tiempo de Reacción , Trastornos de la Visión/etiología
2.
Sleep Med ; 69: 220-232, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32200309

RESUMEN

Sudden drops in pulse wave amplitude (PWA) measured by finger photoplethysmography (PPG) are known to reflect peripheral vasoconstriction resulting from sympathetic activation. Previous work demonstrated that sympathetic activations during sleep typically accompany the occurrence of pathological respiratory and motor events, and their alteration may be associated with the arising of metabolic and cardiovascular diseases. Importantly, PWA-drops often occur in the absence of visually identifiable cortical micro-arousals and may thus represent a more accurate marker of sleep disruption/fragmentation. In this light, an objective and reproducible quantification and characterization of sleep-related PWA-drops may offer a valuable, non-invasive approach for the diagnostic and prognostic evaluation of patients with sleep disorders. However, the manual identification of PWA-drops represents a time-consuming practice potentially associated with high intra/inter-scorer variability. Since validated algorithms are not readily available for research and clinical purposes, here we present a novel automated approach to detect and characterize significant drops in the PWA-signal. The algorithm was tested against expert human scorers who visually inspected corresponding PPG-recordings. Results demonstrated that the algorithm reliably detects PWA-drops and is able to characterize them in terms of parameters with a potential physiological and clinical relevance, including timing, amplitude, duration and slopes. The method is completely user-independent, processes all-night PSG-data, automatically dealing with potential artefacts, sensor loss/displacements, and stage-dependent variability in PWA-time-series. Such characteristics make this method a valuable candidate for the comparative investigation of large clinical datasets, to gain a better insight into the reciprocal links between sympathetic activity, sleep-related alterations, and metabolic and cardiovascular diseases.


Asunto(s)
Algoritmos , Análisis de la Onda del Pulso , Sueño/fisiología , Sistema Nervioso Simpático , Nivel de Alerta/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Persona de Mediana Edad , Fotopletismografía , Síndromes de la Apnea del Sueño/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA