Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38591418

RESUMEN

Cylindrical Inconel 718 specimens were fabricated via a blown-powder, laser-directed energy deposition (DED-L) additive manufacturing (AM) process equipped with a dual thermal monitoring system to learn key process-structure relationships. Thermographic inspection of the heat affected zone (HAZ) and melt pool was performed with different layer-to-layer time intervals of ~0 s, 5 s, and 10 s, using an infrared camera and dual-wavelength pyrometer, respectively. Maximum melt pool temperatures were found to increase with layer number within a substrate affected zone (SAZ), and then asymptotically decrease. As the layer-to-layer time interval increased the HAZ temperature responses became more repetitive, indicating a desirable approach for achieving a more homogeneous microstructure along the height of a part. Microstructural variations in grain size and the coexistence of specific precipitate phases and Laves phases persisted among the investigated samples despite the employed standard heat treatment. This indicates that the effectiveness of any post DED-L heat treatment depends significantly on the initial, as-printed microstructure. Overall, this study demonstrates the importance of part size, part number per build, and time intervals on DED-L process parameter selection and post-process heat treatments for achieving better quality control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA