Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 256: 112552, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608554

RESUMEN

In this work, we report the generation and characterization of two new Co(III)-peroxo complexes 2 and 3. 2 is best described as a mononuclear CoIII-(O2) complex that exhibits an 18O-isotope sensitive OO bond stretching vibration at 845(-49) cm-1, indicating a relatively weak peroxo moiety compared to those of other CoIII-(O2) complexes reported previously. Complex 3 is a CoIII-peroxo-arylboronate species having a rare {CoIIIOOBO} five-membered metallocycle, which is structurally characterized using X-ray crystallography. Investigations of the reaction mechanism using density functional theory calculations show that 2 likely undergoes a nucleophilic attack to an arylboronic acid, which is generated by hydrolysis of the BPh4- anion in wet acetonitrile solution, to first form a CoIII-peroxo-arylboronic acid adduct, followed by the loss of one benzene molecule to generate the five-membered metallocycle. The entire reaction is thermodynamically favorable. Taken together, the conversion of 2 to 3 represents the discovery of a novel nucleophilic reactivity that can be carried out by mononuclear Co(III)-peroxo complexes.


Asunto(s)
Ácidos Borónicos , Cobalto , Complejos de Coordinación , Ácidos Borónicos/química , Cobalto/química , Complejos de Coordinación/química , Cristalografía por Rayos X , Estructura Molecular
2.
J Am Chem Soc ; 145(4): 2690-2697, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689463

RESUMEN

Aliphatic alkylamines are abundant feedstock and versatile building blocks for many organic transformations. While remarkable progress has been made to construct C-N bonds on aliphatic and aromatic carbon centers, the activation and functionalization of C(sp3)-NH2 bonds in primary alkylamines remain a challenging process. In the present work, we discovered an unprecedented method to directly activate the C(sp3)-NH2 bond of primary alkylamines by a high-valent dinuclear CoIII,IV2(µ-O)2 diamond core complex. This reaction results in the installation of other functional groups such as halides and alkenes onto the α-carbon center concomitant with the 2-e- oxidation of the nitrogen atom on the amino group to form NH2OH. These results shed light on future development enabling versatile functionalization of primary alkylamines based on the dinuclear cobalt system. Moreover, our work suggests that a related high-valent copper-oxo intermediate is likely generated in the ammonia monooxygenase catalytic cycle to affect the oxidation of NH3 to NH2OH.

3.
J Am Chem Soc ; 142(52): 21670-21678, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33325694

RESUMEN

The high-valent diiron(IV) intermediate Q is the key oxidant that cleaves strong C-H bonds of methane in the catalytic cycle of soluble methane monooxygenase (sMMO). sMMO-Q was previously reported as a bis-µ-oxo FeIV2(µ-O)2 diamond core but was recently described to have an open core with a long Fe···Fe distance. We recently reported a high-valent CoIII,IV2(µ-O)2 diamond core complex (1) that is highly reactive with sp3 C-H bonds. In this work, we demonstrated that the C-H bond cleaving reactivity of 1 can be further enhanced by introducing a Lewis base X, affording faster kinetic rate constants and the ability to cleave stronger C-H bonds compared to 1. We proposed that 1 first reacts with X in a fast equilibrium to form an open core species X-CoIII-O-CoIV-O (1-X). We were able to characterize 1-X using EPR spectroscopy and DFT calculations. 1-X exhibited an S = 1/2 EPR signal distinct from that of the parent complex 1. DFT calculations showed that 1-X has an open core with the spin density heavily delocalized in the CoIV-O unit. Moreover, 1-X has a more favorable thermodynamic driving force and a smaller activation barrier than 1 to carry out C-H bond activation reactions. Notably, 1-X is at least 4 orders of magnitude more reactive than its diiron open core analogues. Our findings indicate that the diamond core isomerization is likely a practical enzymatic strategy to unmask the strong oxidizing power of sMMO-Q necessary to attack the highly inert C-H bonds of methane.


Asunto(s)
Cobalto/química , Diamante/química , Hidrógeno/química , Bases de Lewis/química , Termodinámica
4.
J Am Chem Soc ; 141(51): 20127-20136, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31794198

RESUMEN

The selective activation of strong sp3 C-H bonds at mild conditions is a key step in many biological and synthetic transformations and an unsolved challenge for synthetic chemists. In nature, soluble methane monooxygenase (sMMO) is one representative example of nonheme dinuclear iron-dependent enzymes that activate strong sp3 C-H bonds by a high-valent diiron(IV) intermediate Q. To date, synthetic model complexes of sMMO-Q have shown limited abilities to oxidize strong C-H bonds. In this work, we generated a high-valent CoIII,IV2(µ-O)2 complex 3 supported by a tetradentate tris(2-pyridylmethyl)amine (TPA) ligand via one-electron oxidation of its CoIII2(µ-O)2 precursor 2. Characterization of 2 and 3 using X-ray absorption spectroscopy and DFT calculations showed that both species possess a diamond core structure with a short Co···Co distance of 2.78 Å. Furthermore, 3 is an EPR active species showing an S = 1/2 signal with clearly observable hyperfine splittings originated from the coupling of the 59Co nuclear spin with the electronic spin. Importantly, 3 is a highly reactive oxidant for sp3 C-H bonds, and an oxygenation reagent. 3 has the highest rate constant (1.5 M-1 s-1 at -60 °C) for oxidizing 9,10-dihydroanthracene (DHA) compared to diamond core complexes of other first-row transition metals including Mn, Fe and Cu reported previously. Specifically, 3 is about 4-5 orders of magnitude more reactive than the diiron analogs FeIII,IV2(µ-O)2 and FeIV2(µ-O)2 supported by TPA and related ligands. These findings shed light on future development of more reactive approaches for C-H bond activation by bioinspired dicobalt complexes.


Asunto(s)
Cobalto/química , Complejos de Coordinación/química , Oxígeno/química , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...