Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Antibiotics (Basel) ; 13(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786195

RESUMEN

Antimicrobial resistance (AMR) among Escherichia coli from food animals is a rising problem, and heavy antimicrobial use in poultry is a contributing factor. In Zambia, studies linking poultry-associated AMR and antibiotic use (AMU) are rare. This study aimed to investigate commercial and medium-/small-scale poultry farmers' usage of antimicrobials based on a questionnaire survey in ten districts of Zambia. In addition, the study characterized extended-spectrum ß-lactamase (ESBL)-producing E. coli isolates obtained from poultry in the same districts. Data regarding knowledge and usage of antimicrobials were collected from commercial and medium-/small-scale poultry farmers using a pre-tested structured questionnaire. At the same time, cloacal samples were collected and analyzed. One hundred and fifty E. coli isolates were tested for antimicrobial susceptibility using eight antibiotic classes. The isolates were further screened for ESBL production by streaking them on cefotaxime (CTX)-supplemented MacConkey agar, then subjecting them to sequencing on a NextSeq. The questionnaire survey showed that more medium-/small-scale than commercial poultry farmers used antimicrobials (OR = 7.70, 95% CI = 2.88-20.61) but less prescriptions (OR = 0.02, 95% CI = 0.00-0.08). Susceptibility testing revealed that resistance was highest to ampicillin (128/148, 86.5%) and tetracycline (101/136, 74.3%) and that the prevalence of multidrug resistance (MDR) (28/30, 93.3%) was high. Whole-genome sequencing (WGS) of eight (8/30, 26.7%) isolates with CTX Minimum Inhibitory Concentration (MIC) ≥ 4 µg/mL revealed the presence of ESBL-encoding genes blaCTX-M-14, blaCTX-M-55, and blaTEM. WGS also detected other AMR genes for quinolones, aminoglycosides, phenicols, tetracycline, macrolides, and folate-pathway antagonists. Altogether, the questionnaire survey results showed a higher proportion of AMU and lower prescription usage among medium-/small-scale farmers. In addition, our results emphasize the circulation of ESBL-producing E. coli strains with associated MDR. It is critical to educate farmers about AMR risks and to encourage responsible usage of antimicrobials. Furthermore, there is a need to strengthen regulations limiting access to antimicrobials. Finally, there is a need to establish a one health system to guide public health response.

2.
Antibiotics (Basel) ; 13(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534694

RESUMEN

Poultry products in Zambia form an integral part of the human diet in many households, as they are cheap and easy to produce. The burden of poultry diseases has, however, remained a major challenge. Growing consumer demand for poultry products in Zambia has resulted in non-prudent antimicrobial use on farms, intending to prevent and treat poultry diseases for growth optimisation and maximising profits. This cross-sectional study aimed to identify the different types of bacteria causing diseases in chickens in Lusaka and to detect the extended-spectrum lactamase (ESBL)-encoding genes. We collected 215 samples from 91 diseased chickens at three post-mortem facilities and screened them for Gram-negative bacteria. Of these samples, 103 tested positive for various clinically relevant Enterobacteriaceae, including Enterobacter (43/103, 41.7%), Escherichia coli (20/103, 19.4%), Salmonella (10/103, 9.7%), and Shigella (8/103, 7.8%). Other isolated bacteria included Yersinia, Morganella, Proteus, and Klebsiella, which accounted for 21.4%. E. coli, Enterobacter, Salmonella, and Shigella were subjected to antimicrobial susceptibility testing. The results revealed that E. coli, Enterobacter, and Shigella were highly resistant to tetracycline, ampicillin, amoxicillin, and trimethoprim-sulfamethoxazole, while Salmonella showed complete susceptibility to all tested antibiotics. The observed resistance patterns correlated with antimicrobial usage estimated from sales data from a large-scale wholesale and retail company. Six (6/14, 42.9%) E. coli isolates tested positive for blaCTX-M, whilst eight (8/14, 57.1%) Enterobacter samples tested positive for blaTEM. Interestingly, four (4/6, 66.7%) of the E. coli isolates carrying blaCTX-M-positive strains were also positive for blaTEM. Sanger sequencing of the PCR products revealed that five (5/6, 83.3%) of the abovementioned isolates possessed the blaCTX-M-15 allele. The results suggest the presence of potentially pathogenic ESBL-producing Enterobacteriaceae in poultry, threatening public health.

3.
Vet World ; 16(9): 1803-1814, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37859964

RESUMEN

Background and Aim: Inappropriate use of antimicrobials exacerbates antimicrobial resistance (AMR) in the poultry sector. Information on factors driving AMR in the layer poultry sector is scarce in Zambia. This study examined the drivers of AMR in the layer poultry sector in the Lusaka and Copperbelt Provinces of Zambia. Materials and Methods: This cross-sectional study employed a structured questionnaire in 77 layer poultry farms in the provinces of Lusaka and Copperbelt, Zambia, from September 2020 to April 2021. Data analysis was conducted using Stata version 16.1. Antimicrobial resistance was defined as the presence of multidrug resistance (MDR) isolates. Multivariable regression analysis was used to identify drivers of AMR. Results: In total, 365 samples were collected, from which 339 (92.9%) Escherichia coli and 308 (84.4%) Enterococcus spp. were isolated. Multidrug resistance was identified in 39% of the E. coli and 86% of the Enterococcus spp. The overall prevalence of AMR in layer poultry farms was 51.7% (95% confidence interval [CI]: 40.3%-63.5%). Large-scale farmers (Adjusted odds ratio [AOR] = 0.20, 95% CI: 0.04%-0.99%) than small-scale and farmers who were aware of AMR than those who were unaware (AOR = 0.26, 95% CI: 0.08%-0.86%) were less likely to experience AMR problems. Conclusion: This study found a high prevalence of AMR in layer poultry farming linked to the type of farm management practices and lack of AMR awareness. Evidence of high MDR in our study is of public health concern and requires urgent attention. Educational interventions must increase AMR awareness, especially among small- and medium-scale poultry farmers.

4.
Antibiotics (Basel) ; 12(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37508222

RESUMEN

The emergence of pre-extensively drug-resistant tuberculosis (pre-XDR-TB) is a threat to TB control programs in developing countries such as Zambia. Studies in Zambia have applied molecular techniques to understand drug-resistance-associated mutations, circulating lineages and transmission patterns of multi-drug-resistant (MDR) Mycobacterium tuberculosis. However, none has reported genotypes and mutations associated with pre-XDR TB. This study characterized 63 drug-resistant M. tuberculosis strains from the University Teaching Hospital between 2018 and 2019 using targeted gene sequencing and conveniently selected 50 strains for whole genome sequencing. Sixty strains had resistance mutations associated to MDR, one polyresistant, and two rifampicin resistant. Among MDR strains, seven percent (4/60) had mutations associated with pre-XDR-TB. While four, one and nine strains had mutations associated with ethionamide, para-amino-salicylic acid and streptomycin resistances, respectively. All 50 strains belonged to lineage 4 with the predominant sub-lineage 4.3.4.2.1 (38%). Three of four pre-XDR strains belonged to sub-lineage 4.3.4.2.1. Sub-lineage 4.3.4.2.1 strains were less clustered when compared to sub-lineages L4.9.1 and L4.3.4.1 based on single nucleotide polymorphism differences. The finding that resistances to second-line drugs have emerged among MDR-TB is a threat to TB control. Hence, the study recommends a strengthened routine drug susceptibility testing for second-line TB drugs to stop the progression of pre-XDR to XDR-TB and improve patient treatment outcomes.

5.
Antibiotics (Basel) ; 12(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37107019

RESUMEN

The presence of antimicrobial-resistant Enterococci in poultry is a growing public health concern worldwide due to its potential for transmission to humans. The aim of this study was to determine the prevalence and patterns of antimicrobial resistance and to detect drug-resistant genes in Enterococcus faecalis and E. faecium in poultry from four districts in Zambia. Identification of Enterococci was conducted using phenotypic methods. Antimicrobial resistance was determined using the disc diffusion method and antimicrobial resistance genes were detected using polymerase chain reaction and gene-specific primers. The overall prevalence of Enterococci was 31.1% (153/492, 95% CI: 27.1-35.4). Enterococcus faecalis had a significantly higher prevalence at 37.9% (58/153, 95% CI: 30.3-46.1) compared with E. faecium, which had a prevalence of 10.5% (16/153, 95% CI: 6.3-16.7). Most of the E. faecalis and E. faecium isolates were resistant to tetracycline (66/74, 89.2%) and ampicillin and erythromycin (51/74, 68.9%). The majority of isolates were susceptible to vancomycin (72/74, 97.3%). The results show that poultry are a potential source of multidrug-resistant E. faecalis and E. faecium strains, which can be transmitted to humans. Resistance genes in the Enterococcus species can also be transmitted to pathogenic bacteria if they colonize the same poultry, thus threatening the safety of poultry production, leading to significant public health concerns.

6.
Microbiol Resour Announc ; 12(5): e0131822, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37074197

RESUMEN

We report sequences of the complete linear chromosome and five linear plasmids of the relapsing fever spirochete "Candidatus Borrelia fainii" Qtaro. The chromosome sequence of 951,861 bp and the 243,291 bp of plasmid sequences were predicted to contain 852 and 239 protein-coding genes, respectively. The predicted total GC content was 28.4%.

7.
Microorganisms ; 11(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677492

RESUMEN

Relapsing fever (RF) is an arthropod-borne disease caused by Borrelia spirochete, which is one of the major public health concerns in endemic regions including Africa. However, information on Borrelia spirochetes is limited in Zambia. Here, we investigate the Borrelia spirochetes harbored by Ornithodoros ticks in Zambian National Parks. We analyzed 182 DNA samples pooled from 886 Ornithodoros ticks. Of these, 43 tested positive, and their sequence revealed that the ticks harbored both Old and New World RF borreliae. This research presents the first evidence of Old-World RF borreliae in Zambia. The New World RF borreliae detected herein differed from the Candidatus Borrelia fainii previously reported in Zambia and were closely related to the pathogenic Borrelia sp. VS4 identified in Tanzania. Additionally, Borrelia theileri was recently reported in Zambia. Hence, at least four different Borrelia species occur in Zambia, and the organisms causing relapsing fever there might be more complex than previously thought. We empirically confirmed that real-time PCR with TaqMan minor groove binder probes accurately and simultaneously detected both Old and New World RF. In this manner, they could facilitate quantitative analyses of both types of RF borreliae. Subsequent investigations should endeavor to isolate the aforementioned Borrelia spp. and perform serosurveys on patients with RF.

8.
Microorganisms ; 10(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36014101

RESUMEN

Increased antimicrobial resistance (AMR) has been reported for pathogenic and commensal Escherichia coli (E. coli), hampering the treatment, and increasing the burden of infectious diarrhoeal diseases in children in developing countries. This study focused on exploring the occurrence, patterns, and possible drivers of AMR E. coli isolated from children under-five years in Zambia. A hospital-based cross-sectional study was conducted in the Lusaka and Ndola districts. Rectal swabs were collected from 565 and 455 diarrhoeic and healthy children, respectively, from which 1020 E. coli were cultured and subjected to antibiotic susceptibility testing. Nearly all E. coli (96.9%) were resistant to at least one antimicrobial agent tested. Further, 700 isolates were Multi-Drug Resistant, 136 were possibly Extensively-Drug Resistant and nine were Pan-Drug-Resistant. Forty percent of the isolates were imipenem-resistant, mostly from healthy children. A questionnaire survey documented a complex pattern of associations between and within the subgroups of the levels of MDR and socio-demographic characteristics, antibiotic stewardship, and guardians' knowledge of AMR. This study has revealed the severity of AMR in children and the need for a community-specific-risk-based approach to implementing measures to curb the problem.

9.
Antibiotics (Basel) ; 11(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35884098

RESUMEN

Pigs have been shown to be a reservoir for recently emerging livestock-associated Staphylococcus aureus (LA-SA), including methicillin resistant strains in many countries worldwide. However, there is sparse information about LA-SA strains circulating in Zambia. This study investigated the prevalence, phenotypic and genotypic characteristics of S. aureus from pigs and workers at farms and abattoirs handling pigs in Lusaka Province of Zambia. A total of 492 nasal pig swabs, 53 hand and 53 nasal human swabs were collected from farms and abattoirs in selected districts. Standard microbiological methods were used to isolate and determine antimicrobial susceptibility patterns of S. aureus. Polymerase Chain Reaction was used to confirm the species identity and detect antimicrobial resistance and virulence genes of isolates, whereas genetic diversity was evaluated using spa typing. Overall prevalence of S. aureus was 33.1%, 37.8% for pigs and 11.8% for humans. The isolates were resistant to several antibiotics with resistance ranging from 18% to 98% but were all susceptible to vancomycin. Typical LA-SA spa types were detected. The presence of plasmid mediated resistance genes such as tetM (12.8%), other resistance determinants and immune evasion cluster genes among the isolates is of great public health concern. Thus, continuous surveillance of S. aureus using a "One health" approach is warranted to monitor S.aureus infections and spread of antimicrobial resistance.

10.
BMC Microbiol ; 22(1): 160, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717165

RESUMEN

BACKGROUND: The food industry is increasingly becoming more scrutinized, given the frequency and intensity with which zoonotic diseases are being reported. Pathogen tracking has become more applicable with regards food safety. It is in this regard that the present study was formulated to track Listeria species. in freshly slaughtered cattle carcasses by utilizing standard and molecular biological techniques. METHODS: A cross-sectional study design was conducted from March to December 2020 with 200 samples being equally collected in the rainy and dry seasons. A total of 180 and 20 swabs were aseptically collected from carcasses and the environment respectively. Samples were first subjected to pre-enrichment in half-strength Fraser broth followed by enrichment in full strength Fraser broth and subsequent plating on Listeria agar. Listeria growth characteristics were identified up to species level based on their morphological and biochemical characteristics. Further, molecular detection and phylogenetic analysis was conducted. Quantitative proportionate survey data were analyzed using Stata Version 15 software to estimate crude prevalence taking into account complex design at abattoir level. Factors associated with contamination were characterized using logistic regression. Sequences were analyzed using, Genetyyx version 12 and phylogenetic Mega. RESULTS: Of the 200 samples, 19 were positive for Listeria species identified as L.innocua 14/19 (73.7%) and L. monocytogenes 5/19 (26.3%). All isolates were from freshly slaughtered carcasses, and none from environment. Siginificant differences in contamination levels were observed based on season: rainy season yielded 14 (73.6%) whilst the dry season 5 (26.3%). The L. monocytogenes strains showed a high degree of homogeneity on phylogenetic analysis and clustered based on abattoir. Seasonality was identified as a major determinant influencing contamination based on the final logistic regression model. CONCLUSION: This study found evidence of L. monocytogenes contamination on traditionally raised beef carcasses across various abattoirs surveyed. The failure to find Listeria contamination on the abattoir environment may to a greater extent intimate cattle carccases as primary sources of contamination. However, a more comprerehnsive study incorporating different geographical regions is needed to conclusively ascertain these present findings.


Asunto(s)
Listeria monocytogenes , Listeria , Animales , Bovinos , Estudios Transversales , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Listeria/genética , Filogenia , Zambia
11.
Antibiotics (Basel) ; 11(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35326846

RESUMEN

Antimicrobial resistance (AMR) is a global public health problem affecting animal and human medicine. Poultry production is among the primary sources of income for many Zambians. However, the increased demand for poultry products has led to a subsequent increase in antimicrobial use. This study assessed the awareness of AMR and associated factors among layer poultry farmers in Zambia. A cross-sectional study was conducted among 77 participants from September 2020 to April 2021. Data was analysed using Stata version 16.1. The overall awareness of AMR among the farmers was 47% (n = 36). The usage of antibiotics in layer poultry production was high at 86% (n = 66). Most antibiotics were accessed from agrovets (31%, n = 24) and pharmacies (21%, n = 16) without prescriptions. Commercial farmers were more likely to be aware of AMR compared to medium-scale farmers (OR = 14.07, 95% CI: 2.09-94.70), as were farmers who used prescriptions to access antibiotics compared to those who did not (OR = 99.66, 95% CI: 7.14-1391.65), and farmers who did not treat market-ready birds with antibiotics compared to those who did (OR = 41.92, 95% CI: 1.26-1396.36). The awareness of AMR among some layer farmers was low. Therefore, policies that promote the rational use of antibiotics need to be implemented together with heightened surveillance activities aimed at curbing AMR.

12.
Int J Microbiol ; 2022: 8570081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37362785

RESUMEN

Background: Salmonella infections are a public health problem across the globe. In South Sudan, there is little information regarding the prevalence and antibiotic resistance patterns of Salmonella. Therefore, this study assessed the prevalence and antimicrobial susceptibility of Salmonella isolates from chickens and humans in South Sudan. Fecal samples were collected and cultured on Xylose Lysine Deoxycholate Agar for the isolation of Salmonella and confirmed using biochemical tests and PCR through the amplification of the invA gene. A total of 417 fecal samples were examined, of which 270 (64.7%) were chicken cloacal swabs while 147 (35.3%) were humans' stool specimens. Results: Eleven (11) Salmonella isolates were isolated from humans while nine were from chickens. All 11 isolates from humans were susceptible to sulfamethoxazole-trimethoprim, chloramphenicol, streptomycin, cefotaxime, nalidixic acid, and gentamicin. However, 4 (36.7%) isolates showed resistance to ciprofloxacin, 2 (18.9%) to ampicillin, and 1 (9.1%) to tetracycline. All chicken isolates were susceptible to chloramphenicol, streptomycin, sulfamethoxazole-trimethoprim, ciprofloxacin, cefotaxime, nalidixic acid, and gentamicin but showed resistance to tetracycline 2 (22.2%) and ampicillin 1 (11.1%). Conclusion: Antimicrobial resistant isolates were isolated in both chickens and humans. Further, MDR isolates were found in both chicken and human samples, and this is a public health concern. This, therefore, calls for concerted efforts to educate producers and consumers on public health, food safety, food hygiene in food production, and enhancement of surveillance programmes on zoonotic bacteria and antimicrobial susceptibility.

13.
Transbound Emerg Dis ; 69(3): 1577-1588, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33900039

RESUMEN

Bovine tuberculosis (bTB) is a neglected disease that affects cattle and humans. The burden of bTB is higher in developing countries as compared to industrialized countries. The reasons behind this discrepancy include the fact that bTB control measures, such as testing and slaughter of infected cattle and pasteurization of milk, are not usually practised in developing countries largely because of their high cost. To improve our understanding of bTB in developing countries, molecular typing studies are essential, in particular in terms of transmission dynamics, infection sources and knowledge of circulating strains of the principal causative agent, Mycobacterium bovis. In this study, we applied a suite of molecular typing techniques encompassing deletion analysis, spoligotyping and MIRU-VNTR to isolates recovered from samples collected during the routine post-mortem of cattle at the cold storage abattoir in Lilongwe, Malawi. Out of 63 isolates, 51 (81%) belonged to the European 1. M. bovis clonal complex. Spoligotyping identified 8 profiles, with SB0131 being the predominant type (56% of isolates). Spoligotypes SB0273 and SB0425 were identified in 14% and 13%, respectively, of the isolates. MIRU-VNTR showed a high discriminatory power of 0.959 and differentiated the 8 spoligotypes to 31 genotypes. The high diversity of M. bovis within the study area suggests the infection has been circulating in the area for a considerable period of time, likely facilitated by the lack of effective control measures. We also observed genetic similarities between isolates from Malawi (this study) to isolates described in previous studies in Zambia and Mozambique, suggesting transmission links in this region. The information provided by this study provides much needed evidence for the formulation of improved bTB control strategies.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium bovis , Tuberculosis Bovina , Animales , Bovinos , Variación Genética , Genotipo , Malaui/epidemiología , Repeticiones de Minisatélite , Epidemiología Molecular , Mycobacterium bovis/genética , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología
14.
Diagn Microbiol Infect Dis ; 101(4): 115494, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34391980

RESUMEN

Early detection and treatment are paramount for the timely control of Mycobacterium avium infections. Herein, we designed a LAMP assay targeting a widely used species-specific marker IS1245 for the rapid detection of M. avium and evaluated its applicability using human (n = 137) and pig (n = 91) M. avium isolates from Japan. The developed assay could detect as low as 1 genome copy of M. avium DNA within 30 minutes. All 91 (100%) M. avium isolates from pigs were detected positive while all other tested bacterial species were negative. Interestingly, among the 137 clinical M. avium isolates, 41 (30%) were undetectable with this LAMP assay as they lacked IS1245, the absence of which was revealed by PCR and whole-genome sequencing. These findings highlighted genotypic differences in M. avium strains from humans and pigs in Japan and how this diversity can influence the applicability of a detection tool across different geographic areas and hosts.


Asunto(s)
Elementos Transponibles de ADN/genética , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium avium/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Variación Genética , Genoma Bacteriano/genética , Humanos , Japón , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium/veterinaria , Mycobacterium avium/clasificación , Mycobacterium avium/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Especificidad de la Especie , Porcinos , Enfermedades de los Porcinos/microbiología
15.
Pathogens ; 10(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205691

RESUMEN

Ticks are obligate ectoparasites as they require to feed on their host blood during some or all stages of their life cycle. In addition to the pathogens that ticks harbor and transmit to vertebrate hosts, they also harbor other seemingly nonpathogenic microorganisms including nutritional mutualistic symbionts. Tick nutritional mutualistic symbionts play important roles in the physiology of the host ticks as they are involved in tick reproduction and growth through the supply of B vitamins as well as in pathogen maintenance and propagation. Coxiella-like endosymbionts (CLEs) are the most widespread endosymbionts exclusively reported in ticks. Although CLEs have been investigated in ticks in other parts of the world, there is no report of their investigation in ticks in Zambia. To investigate the occurrence of CLEs, their maintenance, and association with host ticks in Zambia, 175 ticks belonging to six genera, namely Amblyomma, Argas, Haemaphysalis, Hyalomma, Ornithodoros, and Rhipicephalus, were screened for CLEs, followed by characterization of CLEs by multi-locus sequence typing of the five Coxiella housekeeping genes (dnaK, groEL, rpoB, 16S rRNA, and 23S rRNA). The results showed that 45.7% (n = 80) were positive for CLEs. The comparison of the tick 16S rDNA phylogenetic tree with that of the CLEs concatenated sequences showed that there was a strong correlation between the topology of the trees. The results suggest that most of the CLEs have evolved within tick species, supporting the vertical transmission phenomenon. However, the negative results for CLE in some ticks warrants further investigations of other endosymbionts that the ticks in Zambia may also harbor.

16.
Ticks Tick Borne Dis ; 12(4): 101720, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865179

RESUMEN

Ticks (Ixodidae and Argasidae) are important arthropod vectors of various pathogens that cause human and animal infectious diseases. Many previously published studies on tick-borne pathogens focused on those transmitted by ixodid ticks. Although there are increasing reports of viral pathogens associated with argasid ticks, information on bacterial pathogens they transmit is scarce. The aim of this molecular study was to detect and characterize Rickettsia and Anaplasmataceae in three different argasid tick species, Ornithodoros faini, Ornithodoros moubata, and Argas walkerae collected in Zambia. Rickettsia hoogstraalii and Rickettsia lusitaniae were detected in 77 % (77/100) of Ar. walkerae and 10 % (5/50) of O. faini, respectively. All O. moubata pool samples (n = 124) were negative for rickettsial infections. Anaplasmataceae were detected in 63 % (63/100) of Ar. walkerae and in 82.2 % (102/124) of O. moubata pools, but not in O. faini. Phylogenetic analysis based on the concatenated sequences of 16S rRNA and groEL genes revealed that Anaplasma spp. detected in the present study were distinct from previously validated Anaplasma species, indicating that the current knowledge on the diversity and vector range of Anaplasma spp. is incomplete. Our findings highlight new geographical records of R. lusitaniae and R. hoogstraalii and confirm that the wide geographic distribution of these species includes the African continent. The data presented here increase our knowledge on argasid tick-borne bacteria and contribute toward understanding their epidemiology.


Asunto(s)
Anaplasma/aislamiento & purificación , Argas/microbiología , Ornithodoros/microbiología , Rickettsia/aislamiento & purificación , Animales , Zambia
17.
Antibiotics (Basel) ; 10(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652871

RESUMEN

A cross-sectional study was used to identify and assess prevalence and phenotypic antimicrobial resistance (AMR) profiles of Escherichia coli and other enterobacteria isolated from healthy wildlife and livestock cohabiting at a 10,000 acres game ranch near Lusaka, Zambia. Purposive sampling was used to select wildlife and livestock based on similarities in behavior, grazing habits and close interactions with humans. Isolates (n = 66) from fecal samples collected between April and August 2018 (n = 84) were examined following modified protocols for bacteria isolation, biochemical identification, molecular detection, phylogenetic analysis, and antimicrobial susceptibility testing by disc diffusion method. Data were analyzed using R software, Genetyx ver.12 and Mega 6. Using Applied Profile Index 20E kit for biochemical identification, polymerase chain reaction assay and sequencing, sixty-six isolates were identified to species level, of which Escherichia coli (72.7%, 48/66), E. fergusonii (1.5%, 1/66), Shigella sonnei (22.7%, 14/66), Sh. flexinerri (1.5%, 1/66) and Enterobacteriaceae bacterium (1.5%, 1/66), and their relationships were illustrated in a phylogenetic tree. Phenotypic antimicrobial resistance or intermediate sensitivity expression to at least one antimicrobial agent was detected in 89.6% of the E. coli, and 73.3% of the Shigella isolates. The E. coli isolates exhibited the highest resistance rates to ampicillin (27%), ceftazidime (14.3%), cefotaxime (9.5%), and kanamycin (9.5%). Multidrug resistance (MDR) was detected in 18.8% of E. coli isolates while only 13.3% Shigella isolates showed MDR. The MDR was detected among isolates from impala and ostrich (wild animals in which no antimicrobial treatment was used), and in isolates from cattle, pigs, and goats (domesticated animals). This study indicates the possible transmission of drug-resistant microorganisms between animals cohabiting at the wildlife-livestock interface. It emphasizes the need for further investigation of the role of wildlife in the development and transmission of AMR, which is an issue of global concern.

18.
PLoS Negl Trop Dis ; 15(1): e0008996, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33493196

RESUMEN

Bovine tuberculosis (TB) caused by Mycobacterium bovis is a significant health threat to cattle and a zoonotic threat for humans in many developing countries. Rapid and accurate detection of M. bovis is fundamental for controlling the disease in animals and humans, and for the proper treatment of patients as one of the first-line anti-TB drug, pyrazinamide, is ineffective against M. bovis. Currently, there are no rapid, simplified and low-cost diagnostic methods that can be easily integrated for use in many developing countries. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for specific identification of M. bovis by targeting the region of difference 4 (RD4), a 12.7 kb genomic region that is deleted solely in M. bovis. The assay's specificity was evaluated using 139 isolates comprising 65 M. bovis isolates, 40 M. tuberculosis isolates, seven M. tuberculosis complex reference strains, 22 non-tuberculous mycobacteria and five other bacteria. The established LAMP detected only M. bovis isolates as positive and no false positives were observed using the other mycobacteria and non-mycobacteria tested. Our LAMP assay detected as low as 10 copies of M. bovis genomic DNA within 40 minutes. The procedure of LAMP is simple with an incubation at a constant temperature. Results are observed with the naked eye by a color change, and there is no need for expensive equipment. The established LAMP can be used for the detection of M. bovis infections in cattle and humans in resource-limited areas.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Mycobacterium bovis/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Bovinos , Humanos , Mycobacterium bovis/genética , Sensibilidad y Especificidad
19.
Pathogens ; 9(6)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545824

RESUMEN

Bat-associated bartonellae, including Bartonella mayotimonensis and Candidatus Bartonella rousetti, were recently identified as emerging and potential zoonotic agents, respectively. However, there is no report of bat-associated bartonellae in Zambia. Thus, we aimed to isolate and characterize Bartonella spp. from bats and bat flies captured in Zambia by culturing and PCR. Overall, Bartonella spp. were isolated from six out of 36 bats (16.7%), while Bartonella DNA was detected in nine out of 19 bat flies (47.3%). Subsequent characterization using a sequence of five different genes revealed that three isolates obtained from Egyptian fruit bats (Rousettus aegyptiacus) were Ca. B. rousetti. The isolates obtained from insectivorous bats (Macronycteris vittatus) were divided into two previously unclassified bat-associated bartonellae. A phylogenetic analysis of the six genotypes of Bartonella gltA sequences from nine pathogen-positive bat flies revealed that three genotypes belonged to the same clades as bat-associated bartonellae, including Ca. B. rousetti. The other three genotypes represented arthropod-associated bartonellae, which have previously been isolated only from ectoparasites. We demonstrated that Ca. B. rousetti is maintained between bats (R. aegyptiacus) and bat flies in Zambia. Continuous surveillance of Bartonella spp. in bats and serological surveys in humans in Africa are warranted to evaluate the public health importance of bat-associated bartonellae.

20.
Int J Parasitol Parasites Wildl ; 9: 234-238, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31198682

RESUMEN

Bat trypanosomes consist of more than 30 trypanosome species from over 70 species of bats. Recent studies suggest that bats play a role in disseminating trypanosomes from African continent to the terrestrial mammals both in the Afrotropic-Palearctic Ecozones and Nearctic Ecozone. However, the diversity, distribution, and evolution of bat trypanosomes are still unclear. To better understand their evolution, more genetic data of bat trypanosomes from a variety of locations are required. During a survey of Borrelia spp. of bats inhabiting a cave in Zambia, we observed flagellate parasites from 5 of 43 hemocultures. Sequence and phylogenetic analyses of the glycosomal glyceraldehyde 3-phosphate dehydrogenase gene (gGAPDH; 572 bp) and the 18S ribosomal RNA gene (18S rRNA gene; 1,079-1,091 bp) revealed that all were Trypanosoma spp. belonged to the Trypanosoma cruzi clade. Three and two of them exhibited the similarity with T. conorhini and T. dionisii, respectively. The present study provides the first genetic data on Trypanosoma spp. of bats inhabiting Zambia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...