Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-489529

RESUMEN

Neutralizing antibodies (NAbs) can prevent and treat infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, continuously emerging variants, such as Omicron, have significantly reduced the potency of most known NAbs. The selection of NAbs with broad neutralizing activities and the identification of conserved critical epitopes are still urgently needed. Here, we identified an extremely potent antibody (55A8) by single B-cell sorting from convalescent SARS-CoV-2-infected patients that recognized the receptor-binding domain (RBD) in the SARS-CoV-2 spike (S) protein. 55A8 could bind to wild-type SARS-CoV-2, Omicron BA.1 and Omicron BA.2 simultaneously with 58G6, a NAb previously identified by our group. Importantly, an antibody cocktail containing 55A8 and 58G6 (2-cocktail) showed synergetic neutralizing activity with a half-maximal inhibitory concentration (IC50) in the picomolar range in vitro and prophylactic efficacy in hamsters challenged with Omicron (BA.1) through intranasal delivery at an extraordinarily low dosage (25 g of each antibody daily) at 3 days post-infection. Structural analysis by cryo-electron microscopy (cryo-EM) revealed that 55A8 is a Class III NAb that recognizes a highly conserved epitope. It could block angiotensin-converting enzyme 2 (ACE2) binding to the RBD in the S protein trimer via steric hindrance. The epitopes in the RBD recognized by 55A8 and 58G6 were found to be different and complementary, which could explain the synergetic mechanism of these two NAbs. Our findings not only provide a potential antibody cocktail for clinical use against infection with current SARS-CoV-2 strains and future variants but also identify critical epitope information for the development of better antiviral agents.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-440481

RESUMEN

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus displayed remarkable efficacy against authentic B.1.351 virus. Each of these 3 mAbs in combination with one neutralizing Ab recognizing non-competing epitope exhibited synergistic effect against authentic SARS-CoV-2 virus. Surprisingly, structural analysis revealed that 58G6 and 13G9, encoded by the IGHV1-58 and the IGKV3-20 germline genes, both recognized the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly bound to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrated prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. These 2 ultrapotent neutralizing Abs can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.

3.
Protein & Cell ; (12): 877-888, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-922482

RESUMEN

A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M


Asunto(s)
Humanos , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/virología , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Imidazoles/uso terapéutico , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Naftoquinonas/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Estructura Terciaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...