Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 309: 119753, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35835276

RESUMEN

Arsenic exposure has been reported to alter the gut microbiome in mice. Activity of the gut microbiome derived from fecal microbiota has been found to affect arsenic bioaccessibility in an in vitro gastrointestinal (GI) model. Only a few studies have explored the relation between arsenic exposure and changes in the composition of the gut microbiome and in arsenic bioaccessibility. Here, we used simulated GI model system (GIMS) containing a stomach, small intestine, colon phases and microorganisms obtained from mouse feces (GIMS-F) and cecal contents (GIMS-C) to assess whether exposure to arsenic-contaminated soils affect the gut microbiome and whether composition of the gut microbiome affects arsenic bioaccessibility. Soils contaminated with arsenic did not alter gut microbiome composition in GIMS-F colon phase. In contrast, arsenic exposure resulted in the decline of bacteria in GIMS-C, including members of Clostridiaceae, Rikenellaceae, and Parabacteroides due to greater diversity and variability in microbial sensitivity to arsenic exposure. Arsenic bioaccessibility was greatest in the acidic stomach phase of GIMS (pH 1.5-1.7); except for GIMS-C colon phase exposed to mining-impacted soil in which greater levels of arsenic solubilized likely due to microbiome effects. Physicochemical properties of different test soils likely influenced variability in arsenic bioaccessibility (GIMS-F bioaccessibility range: 8-37%, GIMS-C bioaccessibility range: 2-18%) observed in this study.


Asunto(s)
Arsénico , Microbioma Gastrointestinal , Contaminantes del Suelo , Animales , Arsénico/análisis , Disponibilidad Biológica , Tracto Gastrointestinal/metabolismo , Ratones , Suelo , Contaminantes del Suelo/análisis
2.
Inhal Toxicol ; 31(2): 73-87, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30985217

RESUMEN

Background: Wildland firefighters conducting prescribed burns are exposed to a complex mixture of pollutants, requiring an integrated measure of exposure. Objective: We used urinary mutagenicity to assess if systemic exposure to mutagens is higher in firefighters after working at prescribed burns versus after non-burn work days. Other biomarkers of exposure and oxidative stress markers were also measured. Methods: Using a repeated measures study design, we collected urine before, immediately after, and the morning after a work shift on prescribed burn and non-burn work days from 12 healthy subjects, and analyzed for malondialdehyde (MDA), 8-isoprostane, 1-hydroxypyrene (OH-pyrene), and mutagenicity in Salmonella YG1041 +S9. Particulate matter (PM2.5) and carbon monoxide (CO) were measured by personal monitoring. Light-absorbing carbon (LAC) of PM2.5 was measured as a surrogate for black carbon exposure. Linear mixed-effect models were used to assess cross-work shift changes in urinary biomarkers. Results: No significant differences occurred in creatinine-adjusted urinary mutagenicity across the work shift between burn days and non-burn days. Firefighters lighting fires had a non-significant, 1.6-fold increase in urinary mutagenicity for burn versus non-burn day exposures. Positive associations were found between cross-work shift changes in creatinine-adjusted urinary mutagenicity and MDA (p = 0.0010), OH-pyrene (p = 0.0001), and mass absorption efficiency which is the LAC/PM2.5 ratio (p = 0.2245), respectively. No significant effect of day type or work task on cross-work shift changes in MDA or 8-isoprostane was observed. Conclusion: Urinary mutagenicity may serve as a suitable measure of occupational smoke exposures among wildland firefighters, especially among those lighting fires for prescribed burns.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Biomarcadores/orina , Bomberos , Mutágenos/toxicidad , Exposición Profesional/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Humo/efectos adversos , Contaminantes Ocupacionales del Aire/orina , Creatinina/orina , Dinoprost/análogos & derivados , Dinoprost/orina , Incendios , Humanos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Malondialdehído/orina , Pruebas de Mutagenicidad , Exposición Profesional/análisis , Pirenos/orina , Salmonella/efectos de los fármacos , Salmonella/genética , South Carolina
3.
Mutat Res ; 714(1-2): 17-25, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21689667

RESUMEN

Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP.


Asunto(s)
Benzo(a)pireno/toxicidad , Benzopirenos/toxicidad , Aductos de ADN , Mutágenos/toxicidad , Adenina , Guanina , Pruebas de Mutagenicidad , Mutación , Salmonella/genética
4.
Mutat Res ; 692(1-2): 19-25, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20691712

RESUMEN

The Salmonella mutagenicity assay can be performed using cells that are in different growth phases. Thus, the plate-incorporation assay involves plating stationary-phase cells with the mutagen, after which the cells undergo a brief lag phase and, consequently, are exposed to the mutagen and undergo mutagenesis while in the logarithmic (log) phase. In contrast, a liquid-suspension assay involves exposure of either log- or stationary-phase cells to the mutagen for a specified period of time, sometimes followed by a wash, resulting in the cells growing in medium in the absence of the mutagen. To explore global gene expression in Salmonella, and to test for possible effects of growth phase and transcriptional status on mutagenesis, we performed microarray analysis on cells of Salmonella strain TA100 exposed to the drinking-water mutagen MX in either the log or stationary phase. The genes in functional pathways involving amino acid transport and metabolism and energy metabolism were expressed differentially in log-phase cells, whereas genes in functional pathways involving protein trafficking, cell envelope, and two-component systems using common signal transduction were expressed differentially in stationary-phase cells. More than 90% of the ribosomal-protein biosynthesis genes were up-regulated in stationary- versus log-phase cells. MX was equally mutagenic to cells in log- and stationary-phase growth when the results were expressed as mutant frequencies (revertants/survivors/µM), but it was twice as mutagenic in stationary-phase cells when the results were expressed as mutant yields (revertants/nmole or revertants/µM). There was a complex transcriptional response underlying these results, with mucA/B being greatly up-regulated in log-phase cells but umuC/D up-regulated in stationary-phase cells. The transcriptional state of TA100 cells at the time of mutagen treatment may influence the outcome of mutagen treatment.


Asunto(s)
Ciclo Celular , Furanos , Pruebas de Mutagenicidad/métodos , Salmonella/efectos de los fármacos , Salmonella/genética , Transcripción Genética , Análisis por Micromatrices , Contaminantes Químicos del Agua
5.
Mutat Res ; 688(1-2): 41-6, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20214911

RESUMEN

BACKGROUND: Environmental, lifestyle, and occupational exposures on semen quality have been investigated in epidemiological studies with inconsistent results. Genetic factors involved in toxicant activation and detoxification have been examined in relation to the risk of outcomes such as cancer, cardiovascular, and neurologic disorders. However, the effect of common genetic variants in the metabolism of toxicants on semen quality parameters has rarely been evaluated. In this analysis, we evaluated functional SNPs of three genes of the glutathione-S-transferase (GSTM1, GSTT1, GSTZ1) enzyme family. METHODS: Participants were 228 presumed fertile men recruited as part of a community-based study. Semen outcome data from this study included total sperm count and concentration, sperm morphology, and sperm DNA integrity and chromatin maturity. DNA was obtained from 162 men from a mouth-rinse sample and genotyped for the presence of GSTT1-1 and GSTM1-1 null genotypes and the GSTZ1 SNPs at positions 94 (rs3177427) and 124 (rs3177429). We used multivariable linear regression to assess the relationship between each genotype and sperm outcomes. RESULTS: Overall, our results did not reveal a consistent pattern between GSTM1 and GSTZ genotypes and increased occurrence of adverse sperm outcomes. However, the GSTT1 non-null genotype yielded the coefficients with the largest magnitude for sperm count and sperm concentration (beta=-0.528, 95% CI -1.238 to 0.199 and beta=-0.353, 95% CI -0.708 to 0.001, respectively), suggesting that it might be adverse. CONCLUSIONS: These results indicate that common polymorphisms in GST genes do not negatively impact sperm parameters in healthy men with good semen quality. Contrary to expectations, the GSTT1 non-null genotype was associated with reduced sperm concentration and count in semen. Further study with a larger study size and inclusion of gene-exposure interactions is warranted.


Asunto(s)
Glutatión Transferasa/genética , Polimorfismo de Nucleótido Simple , Recuento de Espermatozoides , Espermatozoides/citología , Humanos , Masculino
6.
Environ Mol Mutagen ; 51(1): 69-79, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19598237

RESUMEN

The relationship between chemical structure and biological activity has been examined for various compounds and endpoints for decades. To explore this question relative to global gene expression, we performed microarray analysis of Salmonella TA100 after treatment under conditions of mutagenesis by the drinking-water mutagen MX and two of its structural homologues, BA-1, and BA-4. Approximately 50% of the genes expressed differentially following MX treatment were unique to MX; the corresponding percentages for BA-1 and BA-4 were 91 and 80, respectively. Among these mutagens, there was no overlap of altered Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or RegulonDB regulons. Among the 25 Comprehensive Microbial Resource functions altered by these mutagens, only four were altered by more than one mutagen. Thus, the three structural homologues produced distinctly different transcriptional profiles, with none having a single altered KEGG pathway in common. We tested whether structural similarity between a xenobiotic and endogenous metabolites could explain transcriptional changes. For the 830 intracellular metabolites in Salmonella that we examined, BA-1 had a high degree of structural similarity to 2-isopropylmaleate, which is the substrate for isopropylmalate isomerase. The transcription of the gene for this enzyme was suppressed twofold in BA-1-treated cells. Finally, the distinct transcriptional responses of the three structural homologues were not predicted by a set of phenotypic anchors, including mutagenic potency, cytotoxicity, mutation spectra, and physicochemical properties. Ultimately, explanations for varying transcriptional responses induced by compounds with similar structures await an improved understanding of the interactions between small molecules and the cellular machinery.


Asunto(s)
Furanos/toxicidad , Mutágenos/toxicidad , Salmonella/genética , Furanos/química , Análisis por Micromatrices , Estructura Molecular , Mutágenos/química , Salmonella/efectos de los fármacos , Transducción de Señal , Factores de Transcripción/química , Urea/análogos & derivados , Urea/química , Urea/toxicidad , Agua/química , Abastecimiento de Agua
7.
BMC Bioinformatics ; 8: 378, 2007 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17925033

RESUMEN

BACKGROUND: Deficiencies in microarray technology cause unwanted variation in the hybridization signal, obscuring the true measurements of intracellular transcript levels. Here we describe a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. To illustrate this approach, we characterized changes in global gene expression induced in Salmonella typhimurium TA100 by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), the primary mutagen in chlorinated drinking water. We used the co-expression of genes within an operon and the monotonic increases or decreases in gene expression relative to increasing toxicant concentration to augment our identification of differentially expressed genes beyond Bayesian-t analysis. RESULTS: Operon analysis increased the number of altered genes by 95% from the list identified by a Bayesian t-test of control to the highest concentration of MX. Monotonic analysis added 46% more genes. A functional analysis of the resulting 448 differentially expressed genes yielded functional changes beyond what would be expected from only the mutagenic properties of MX. In addition to gene-expression changes in DNA-damage response, MX induced changes in expression of genes involved in membrane transport and porphyrin metabolism, among other biological processes. The disruption of porphyrin metabolism might be attributable to the structural similarity of MX, which is a chlorinated furanone, to ligands indigenous to the porphyrin metabolism pathway. Interestingly, our results indicate that the lexA regulon in Salmonella, which partially mediates the response to DNA damage, may contain only 60% of the genes present in this regulon in E. coli. In addition, nanH was found to be highly induced by MX and contains a putative lexA regulatory motif in its regulatory region, suggesting that it may be regulated by lexA. CONCLUSION: Operon and monotonic analyses improved the determination of differentially expressed genes beyond that of Bayesian-t analysis, showing that MX alters cellular metabolism involving pathways other than DNA damage. Because co-expression of similarly functioning genes also occurs in eukaryotes, this method has general applicability for improving analysis of toxicogenomic data.


Asunto(s)
Proteínas Bacterianas/metabolismo , Furanos/toxicidad , Perfilación de la Expresión Génica/métodos , Salmonella/efectos de los fármacos , Salmonella/metabolismo , Toxicogenética/métodos , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Relación Dosis-Respuesta a Droga , Mutágenos/toxicidad , Operón/genética , Factores de Transcripción/genética
8.
Toxicol Sci ; 99(2): 432-45, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17656487

RESUMEN

Exposure to bromodichloromethane (BDCM), one of the most prevalent disinfection byproducts in drinking water, can occur via ingestion of water and by dermal absorption and inhalation during activities such as bathing and showering. The objectives of this research were to assess BDCM pharmacokinetics in human volunteers exposed percutaneously and orally to (13)C-BDCM and to evaluate factors that could affect disposition of BDCM. Among study subjects, CYP2E1 activity varied fourfold; 20% had the glutathione S-transferase theta 1-1 homozygous null genotype; and body fat ranged from 7 to 22%. Subjects were exposed to (13)C-BDCM in water (target concentration of 36 mug/l) via ingestion and by forearm submersion. Blood was collected for up to 24 h and analyzed for (13)C-BDCM by solid-phase microextraction and high-resolution GC-MS. Urine was collected before and after exposure for mutagenicity determinations in Salmonella. After ingestion (mean dose = 146 ng/kg), blood (13)C-BDCM concentrations peaked and declined rapidly, returning to levels near or below the limit of detection (LOD) within 4 h. The T(max) for the oral exposure ranged from 5 to 30 min, and the C(max) ranged from 0.4 to 4.1 ng/l. After the 1 h dermal exposure (estimated mean dose = 155 ng/kg), blood concentrations of (13)C-BDCM ranged from 39 to 170 ng/l and decreased to levels near or below the LOD by 24 h. Peak postdose urine mutagenicity levels that were at least twice that of the predose mean level occurred in 6 of 10 percutaneously exposed subjects and 3 of 8 orally exposed subjects. These results demonstrate a highly significant contribution of dermal absorption to circulating levels of BDCM and confirm the much lower oral contribution, indicating that water uses involving dermal contact can lead to much greater systemic BDCM doses than water ingestion. These data will facilitate development and validation of physiologically based pharmacokinetic models for BDCM in humans.


Asunto(s)
Administración Cutánea , Administración Oral , Área Bajo la Curva , Citocromo P-450 CYP2E1/fisiología , Glutatión Transferasa/fisiología , Semivida , Humanos , Modelos Biológicos , Trihalometanos/administración & dosificación , Trihalometanos/farmacocinética
9.
Mutat Res ; 572(1-2): 98-112, 2005 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-15790493

RESUMEN

1,1-Dichloropropene (1,1-DCPe) is a contaminant of some source waters used to make drinking water. Because of this and the fact that no toxicological data were available for this compound, which is structurally similar to the rodent carcinogen 1,3-dichloropropene (1,3-DCPe), 1,1-DCPe was placed on the Contaminant Candidate List of the US Environmental Protection Agency. Consequently, we have performed a hazard characterization of 1,1-DCPe by evaluating its mutagenicity in the Salmonella assay and its DNA damaging (comet assay) and apoptotic (caspase assay) activities in human lymphoblastoid cells. In Salmonella, 1,1-DCPe was not mutagenic in strains TA98, TA100, TA1535, or TA104 +/-S9 mix. However, it was clearly mutagenic in strain RSJ100, which expresses the rat GSTT1-1 gene. 1,1-DCPe did not induce DNA damage in GSTT1-1-deficient human lymphoblastoid cells, and it induced apoptosis in these cells only at 5 mM. Consistent with its mutagenesis in RSJ100, 1,1-DCPe reacted with glutathione (GSH) in vitro, suggesting an addition-elimination mechanism to account for the detected GSH conjugate. 1,1-DCPe was approximately 5000 times more mutagenic than its ethene congener 1,1-dichloroethylene (1,1-DCE or vinylidene chloride). Neither 1,1-DCE nor 1,3-DCPe showed enhanced mutagenicity in strain RSJ100, indicating a lack of activation of these congeners by GSTT1-1. Thus, 1,1-DCPe is a base-substitution mutagen requiring activation by GSTT1-1, possibly involving the production of a reactive episulfonium ion. This bioactivation mechanism of 1,1-DCPe is different from that of its congeners 1,1-DCE and 1,3-DCPe. The presence of 1,1-DCPe in source waters could pose an ecological or human health risk. Occurrence data for 1,1-DCPe in finished drinking water are needed to estimate human exposure to, and possible health risks from, this mutagenic compound.


Asunto(s)
Compuestos Alílicos/toxicidad , Glutatión Transferasa/metabolismo , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Compuestos Alílicos/metabolismo , Animales , Apoptosis , Biotransformación , Línea Celular , Ensayo Cometa , Humanos , Hidrocarburos Clorados , Microsomas Hepáticos/metabolismo , Mutágenos/metabolismo , Ratas , Salmonella typhimurium/genética , Relación Estructura-Actividad , Contaminantes Químicos del Agua/metabolismo
10.
Mutat Res ; 554(1-2): 335-50, 2004 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-15450430

RESUMEN

Halonitromethanes (HNMs) are a recently identified class of disinfection by-products (DPBs) in drinking water that are mutagenic in Salmonella and potent inducers of DNA strand breaks in mammalian cells. Here we compared the mutagenic potencies of the HNMs to those of their halomethane (HM) homologues by testing all nine HNMs and seven of the nine HMs (minus bromomethane and chloromethane) under the same conditions (the pre-incubation assay) in Salmonella TA100 +/- S9. We also determined the mutation spectra for several DBPs. In the presence of S9, all nine HNMs, but only three HMs, dibromomethane (DBM), dichloromethane (DCM), and bromochloromethane (BCM), were mutagenic. Only two DBPs of each class were mutagenic in the absence of S9. The HNMs were generally more potent mutagens than their HM homologues, and the brominated forms of both classes of DBPs were more mutagenic and cytotoxic than their chlorinated homologues. The HNMs were at least 10 times more cytotoxic than the HMs, and the cytotoxicity rankings in the presence of S9 were similar for the HNMs and the HMs. The addition of a nitro-group to BCM did not change the mutation spectra significantly, with both homologues inducing primarily (55-58%) GC --> AT transitions. The greater cytotoxic and mutagenic activities of the HNMs relative to the HMs are likely due to the greater intrinsic reactivity conferred by the nitro-group. Energy calculations predicted increased reactivity with increasing bromination and greater reactivity of the HNMs versus the HMs (Elumo values were approximately 20 kcal/mol lower for the HNMs compared to their HM homologues). Given that the HNMs also are potent genotoxins in mammalian cells [Environ. Sci. Technol. 38 (2004) 62] and are more mutagenic and 10x more cytotoxic in Salmonella than the HMs, whose levels are regulated in drinking water, further study of their occurrence and potential health effects is warranted.


Asunto(s)
Metano/toxicidad , Mutágenos/toxicidad , Mutación , Salmonella/efectos de los fármacos , Biotransformación , Metano/análogos & derivados , Metano/farmacocinética , Mutágenos/farmacocinética , Salmonella/genética , Relación Estructura-Actividad
11.
J Carcinog ; 3(1): 2, 2004 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-14969591

RESUMEN

BACKGROUND: Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of two major causes of human mortality, colorectal and bladder cancer. Trihalomethanes (THMs) are by-products formed when chlorine is used to disinfect drinking water. The purpose of this study was to examine the ability of the THMs, trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM), to induce DNA strand breaks (SB) in (1) CCRF-CEM human lymphoblastic leukemia cells, (2) primary rat hepatocytes (PRH) exposed in vitro, and (3) rats exposed by gavage or drinking water. METHODS: DNA SB were measured by the DNA alkaline unwinding assay (DAUA). CCRF-CEM cells were exposed to individual THMs for 2 hr. Half of the cells were immediately analyzed for DNA SB and half were transferred into fresh culture medium and incubated for an additional 22 hr before testing for DNA SB. PRH were exposed to individual THMs for 4 hr then assayed for DNA SB. F344/N rats were exposed to individual THMs for 4 hr, 2 weeks, and to BDCM for 5 wk then tested for DNA SB. RESULTS: CCRF-CEM cells exposed to 5- or 10-mM brominated THMs for 2 hr produced DNA SB. The order of activity was TBM>DBCM>BDCM; TCM was inactive. Following a 22-hr recovery period, all groups had fewer SB except 10-mM DBCM and 1-mM TBM. CCRF-CEM cells were found to be positive for the GSTT1-1 gene, however no activity was detected. No DNA SB, unassociated with cytotoxicity, were observed in PRH or F344/N rats exposed to individual THMs. CONCLUSION: CCRF-CEM cells exposed to the brominated THMs at 5 or 10 mM for 2 hr showed a significant increase in DNA SB when compared to control cells. Additionally, CCRF-CEM cells exposed to DBCM and TBM appeared to have compromised DNA repair capacity as demonstrated by an increased amount of DNA SB at 22 hr following exposure. CCRF-CEM cells were found to be positive for the GSTT1-1 gene, however no activity was detected. No DNA SB were observed in PRH or F344/N rats exposed to individual THMs.

12.
Mutat Res ; 538(1-2): 41-50, 2003 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12834753

RESUMEN

Trihalomethanes (THMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocytes in vitro. Exposure to THMs occurs through oral, dermal, or inhalation routes, with the lung being a target of exposure by the latter route, although not a target for rodent carcinogenicity. Thus, to examine the genotoxicity of THMs in this tissue, we used the comet assay to examine the DNA damaging ability of five THMs in primary human lung epithelial cells. Cells were collected by scraping the large airways of four volunteers with a cytology brush and then passaging the cells no more than three times in order to have sufficient numbers for the experiments. Cells were exposed for 3h to 10, 100, or 1000 microM CHCl(3), CHCl(2)Br, CHClBr(2), or CHBr(3); CH(2)Cl(2) was also used as a model dihalomethane for comparison to the THMs. The compounds ranked as follows for DNA damaging ability: CHCl(2)Br>CHBr(3)>CHCl(3) approximately equal CH(2)Cl(2); CHClBr(2) was negative. Considerable inter-individual variation was observed. For example, CHCl(3) was genotoxic in only two subjects, and the interaction between dose and donor was highly significant (P<0.001). The same variation was observed for CHCl(2)Br, which was positive only in the two subjects in which CHCl(3) was negative. This variation was not due to the GSTT1-1 genotype of the subjects. Although two subjects were GSTT1-1(+), and two were GSTT1-1(-), no cultured cells with a GSTT1-1(+) genotype had detectable GSTT1-1 enzymatic activity nor did any frozen epithelial cells that had not been cultured. However, GSTT1-1 enzymatic activity was detected in fresh (neither frozen nor cultured) lung cells. These results show that freezing or culturing causes lung cells to lose GSTT1-1 activity and that factors other than GSTT1-1 activity play a role in the variable responses of these human cells to the genotoxicity of the halomethanes studied here.


Asunto(s)
Daño del ADN , Mutágenos/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Trihalometanos/toxicidad , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión , Ensayo Cometa , Citosol/efectos de los fármacos , Citosol/enzimología , Relación Dosis-Respuesta a Droga , Predisposición Genética a la Enfermedad , Genotipo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones , Conejos , Mucosa Respiratoria/enzimología
13.
Mutat Res ; 525(1-2): 77-83, 2003 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-12650907

RESUMEN

Nonsmoking women in Xuan Wei County, Yunnan Province, China who use smoky coal for cooking and heating in poorly ventilated homes have the highest lung cancer mortality rate in China, and their lung cancer is linked epidemiologically to their use of smoky coal. The emissions contain 81% organic matter, of which 43% is polycyclic aromatic hydrocarbons (PAHs). Exposure assessment and molecular analysis of the lung tumors from nonsmoking women who use smoky coal strongly indicate that PAHs in the emissions are a primary cause of the elevated lung cancer in this population. Here we have determined the mutation spectra of an extract of smoky coal emissions in Salmonella TA98 and TA100; the extract was not mutagenic in TA104. The extract was 8.7 x more mutagenic in TA100 with S9 than without (8.7 rev/microg versus 1.0 rev/microg) and was >3 x more mutagenic in TA100 than in TA98--consistent with a prominent role for PAHs in the mutagenicity of the extract because PAHs are generally more mutagenic in the base-substitution strain TA100 than in the frameshift strain TA98. The extract induced only a hotspot mutation in TA98; another combustion emission, cigarette smoke condensate (CSC), also induces this single class of mutation. In TA100, the mutation spectra of the extract were not significantly different in the presence or absence of S9 and were primarily (78-86%) GC --> TA transversions. This mutation is induced to a similar extent by CSC (78%) and the PAH benzo[a]pyrene (B[a]P) (77%). The frequency of GC --> TA transversions induced in Salmonella by the extract (78-86%) is similar to the frequency of this mutation in the TP53 (76%) and KRAS (86%) genes of lung tumors from nonsmoking women exposed to smoky coal emissions. The mutation spectra of the extract reflect the presence of PAHs in the mixture and support a role for PAHs in the induction of the mutations and tumors due to exposure to smoky coal emissions.


Asunto(s)
Genes ras , Neoplasias Pulmonares/genética , Mutación , Salmonella/genética , Humo/efectos adversos , Proteína p53 Supresora de Tumor/genética , China , Carbón Mineral/efectos adversos , Relación Dosis-Respuesta a Droga , Exposición a Riesgos Ambientales , Femenino , Humanos , Neoplasias Pulmonares/inducido químicamente , Pruebas de Mutagenicidad/métodos , Salmonella/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...