Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(10): e20786, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37860563

RESUMEN

The manufacture of regenerated cellulose-based fibers for better mechanical and comfort qualities was stimulated by the rising demand for cotton and the low production rate needed to meet global demands. Modal-cotton blend provides better tensile and moisture management properties. The present work has been designed to sketch out the scope of increased dye fixation or dye uptake opportunity onto the blends. Cotton-modal blend was dyed with mahogany leaf extract dyes avoiding mordant. The higher wash fastness rating 4/5, 5 along with the FTIR characteristic bands around 1190-1210 cm-1 created attention for the confirmation of dye-fibre bonding. But as modal is a regenerated cellulosic fibre, there was a suspect of uneven fixation because of dual way dye penetration options inside the fibre: direct bonding with cotton cellulose and dye penetration into swollen modal fibre through segmental mobility theory. Fortunately the uniformity of shade was affirmed by the determination of evenness through random CMC DE and K/S values at distinguished parts of the same sample. Mordantless mahogany dye fixation on cotton-modal blend was found even at the elevated dyeing temperature of 130 °C. The detailed CIE Lab data explored the close symmetry and uniformity of the dyeing outcomes of the blend.

2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686193

RESUMEN

Garlic (Allium sativum L.) is an aromatic herb known for its culinary and medicinal uses for centuries. Both unprocessed (white) and processed (black) garlic are known to protect against the pathobiology of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), which has been attributed to their anti-inflammatory and antioxidant properties. The information on the effects of processed and unprocessed garlic on neuronal process outgrowth, maturation, and synaptic development is limited. This study aimed at investigating and comparing the effects of the ethanol extracts of unprocessed (white garlic extract, WGE) and processed (black garlic extract, BGE) garlic on the maturation of primary hippocampal neurons. Neurite outgrowth was stimulated in a dose-dependent manner by both WGE and BGE and the most effective doses were 15 µg/mL and 60 µg/mL, respectively, without showing cytotoxicity. At this optimal concentration, both extracts promoted axonal and dendritic growth and maturation. Furthermore, both extracts substantially increased the formation of functional synapses. However, the effect of WGE was more robust at every developmental stage of neurons. In addition, the gas chromatography and mass spectrometry (GC-MS) analysis revealed a chemical profile of various bioactives in both BGE and WGE. Linalool, a compound that was found in both extracts, has shown neurite outgrowth-promoting activity in neuronal cultures, suggesting that the neurotrophic activity of garlic extracts is attributed, at least in part, to this compound. By using network pharmacology, linalool's role in neuronal development can also be observed through its modulatory effect on the signaling molecules of neurotrophic signaling pathways such as glycogen synthase kinase 3 (GSK3ß), extracellular signal-regulated protein kinase (Erk1/2), which was further verified by immunocytochemistry. Overall, these findings provide information on the molecular mechanism of processed and unprocessed garlic for neuronal growth, survival, and memory function which may have the potential for the prevention of several neurological disorders.


Asunto(s)
Productos Biológicos , Ajo , Animales , Ratas , Antioxidantes , Neuronas , Etanol , Quinasas MAP Reguladas por Señal Extracelular , Extractos Vegetales/farmacología
3.
Curr Neuropharmacol ; 21(2): 353-379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35272592

RESUMEN

Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.


Asunto(s)
Fitoestrógenos , Calidad de Vida , Humanos , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico , Estrógenos/uso terapéutico , Estrógenos/farmacología , Encéfalo
4.
Life (Basel) ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362919

RESUMEN

Fibrosis is a hallmark of progressive kidney diseases. The overexpression of profibrotic cytokine, namely transforming growth factor ß (TGF-ß) due to excessive inflammation and tissue damage, induces kidney fibrosis. The inhibition of TGF-ß signaling is markedly limited in experimental disease models. Targeting TGF-ß signaling, therefore, offers a prospective strategy for the management of kidney fibrosis. Presently, the marketed drugs have numerous side effects, but plant-derived compounds are relatively safer and more cost-effective. In this study, TGFßR-1 was targeted to identify the lead compounds among flavonoids using various computational approaches, such as ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analysis, molecular docking, and molecular dynamics simulation. ADME/T screening identified a total of 31 flavonoids with drug-like properties of 31 compounds, a total of 5 compounds showed a higher binding affinity to TGFßR-1, with Epicatechin, Fisetin, and Luteolin ranking at the top three (-13.58, -13.17, and -10.50 kcal/mol, respectively), which are comparable to the control drug linagliptin (-9.074 kcal/mol). The compounds also exhibited outstanding protein-ligand interactions. The molecular dynamic simulations revealed a stable interaction of these compounds with the binding site of TGFßR-1. These findings indicate that flavonoids, particularly Epicatechin, Fisetin, and Luteolin, may compete with the ligand-binding site of TGFßR-1, suggesting that these compounds can be further evaluated for the development of potential therapeutics against kidney fibrosis. Further, in-vitro and in-vivo studies are recommended to support the current findings.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36225186

RESUMEN

Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36093815

RESUMEN

BACKGROUND: Gelidium amansii has been gaining profound interest in East Asian countries due to its enormous commercial value for agar production and its extensive pharmacological properties. Previous studies have shown that the ethanol extract of Gelidium amansii (GAE) has promising neurotrophic effects in in vitro conditions. OBJECTIVES: The present study aimed at investigating the protective effects of GAE against scopolamine-induced cognitive deficits and its modulatory effects on hippocampal plasticity in mice. METHODS: For memory-related behavioral studies, the passive avoidance test and radial arm maze paradigm were conducted. The brain slices of the hippocampus CA1 neurons of experimental mice were then prepared to perform Golgi staining for analyzing spine density and its characteristic shape, and immunohistochemistry for assessing the expression of different pre- and postsynaptic proteins. RESULTS: Following oral administration of GAE (0.5 mg/g body weight), mice with memory deficits exhibited a significant increase in the latency time on the passive avoidance test and a decrease in the number of working and reference memory errors and latency time on the radial arm maze test. Microscopic observations of Golgi-impregnated tissue sections and immunohistochemistry of hippocampal slices showed that neurons from GAE-treated mice displayed higher spine density and spine dynamics, increased synaptic contact, and the recruitment of memory-associated proteins such as N-methyl-D-aspartate receptors (NR2A and NR2B) and postsynaptic density-95 (PSD-95) when compared with the control group. CONCLUSION: With these memory-protective functions and a modulatory role in underlying memory-related events, GAE could be a potential functional food and a promising source of pharmacological agents for the prevention and treatment of memory-related brain disorders.

8.
Front Pharmacol ; 13: 925993, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910356

RESUMEN

Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become critical clinical, socioeconomic, and public health concerns worldwide. The kidney requires a lot of energy, and mitochondria act as the central organelle for the proper functioning of the kidney. Mitochondrial dysfunction has been associated with the pathogenesis of AKI and CKD. Natural products and their structural analogs have been sought as an alternative therapeutic strategy despite the challenges in drug discovery. Many studies have shown that small-molecule natural products can improve renal function and ameliorate kidney disease progression. This review summarizes the nephroprotective effects of small-molecule natural products, such as berberine, betulinic acid, celastrol, curcumin, salidroside, polydatin, and resveratrol. Treatment with small-molecule natural products was shown to attenuate renal oxidative stress and mitochondrial DNA (mtDNA) damage and restore mitochondrial biogenesis and dynamics in the kidneys against various injury stimuli. Therefore, small-molecule natural products should be recognized as multi-target therapeutics and promising drugs to prevent kidney diseases, particularly those with mitochondrial dysfunction.

9.
J Fungi (Basel) ; 8(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736101

RESUMEN

The application of chemical pesticides to protect agricultural crops from pests and diseases is discouraged due to their harmful effects on humans and the environment. Therefore, alternative approaches for crop protection through microbial or microbe-originated pesticides have been gaining momentum. Wheat blast is a destructive fungal disease caused by the Magnaporthe oryzae Triticum (MoT) pathotype, which poses a serious threat to global food security. Screening of secondary metabolites against MoT revealed that antimycin A isolated from a marine Streptomyces sp. had a significant inhibitory effect on mycelial growth in vitro. This study aimed to investigate the inhibitory effects of antimycin A on some critical life stages of MoT and evaluate the efficacy of wheat blast disease control using this natural product. A bioassay indicated that antimycin A suppressed mycelial growth (62.90%), conidiogenesis (100%), germination of conidia (42%), and the formation of appressoria in the germinated conidia (100%) of MoT at a 10 µg/mL concentration. Antimycin A suppressed MoT in a dose-dependent manner with a minimum inhibitory concentration of 0.005 µg/disk. If germinated, antimycin A induced abnormal germ tubes (4.8%) and suppressed the formation of appressoria. Interestingly, the application of antimycin A significantly suppressed wheat blast disease in both the seedling (100%) and heading stages (76.33%) of wheat at a 10 µg/mL concentration, supporting the results from in vitro study. This is the first report on the inhibition of mycelial growth, conidiogenesis, conidia germination, and detrimental morphological alterations in germinated conidia, and the suppression of wheat blast disease caused by a Triticum pathotype of M. Oryzae by antimycin A. Further study is required to unravel the precise mode of action of this promising natural compound for considering it as a biopesticide to combat wheat blast.

10.
Int J Biol Macromol ; 209(Pt B): 2119-2129, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500767

RESUMEN

Chronic kidney disease (CKD) is a major public health concern that costs millions of lives worldwide. Natural products are consistently being explored for the development of novel therapeutics in the management of CKD. Fucoidan is a sulfated polysaccharide predominantly extracted from brown seaweed, which has multiple pharmacological benefits against various kidney problems, including chronic renal failure and diabetic nephropathy. This review aimed at exploring literature to update the renoprotective effects of fucoidan, to get an understanding of pharmacological mechanisms, and to highlight the recent progress of fucoidan-based therapeutic development. Evidence shows that fucoidan is effective against inflammation, oxidative stress, and fibrosis in kidney. Fucoidan targets multiple signaling systems, including Nrf2/HO-1, NF-κB, ERK and p38 MAPK, TGF-ß1, SIRT1, and GLP-1R signaling that are known to be associated with CKD pathobiology. Despite these pharmacological prospects, the application of fucoidan is limited by its larger molecular size. Notably, low molecular weight fucoidan has shown therapeutic promise in some recent studies. However, future research is warranted to translate the outcome of preclinical studies into clinical use in kidney patients.


Asunto(s)
Nefropatías Diabéticas , Insuficiencia Renal Crónica , Nefropatías Diabéticas/tratamiento farmacológico , Femenino , Humanos , Riñón , Masculino , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico
11.
Mar Drugs ; 20(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35621930

RESUMEN

Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.


Asunto(s)
Neoplasias , Algas Marinas , Carotenoides , Humanos , Algas Marinas/química , Xantófilas/química , Xantófilas/farmacología , Xantófilas/uso terapéutico
12.
Phytomedicine ; 99: 154012, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35286936

RESUMEN

BACKGROUND: Plant triterpenoids are major sources of nutraceuticals that provide many health benefits to humans. Lupeol is one of the pentacyclic dietary triterpenoids commonly found in many fruits and vegetables, which is highly investigated for its pharmacological effect and benefit to human health. PURPOSE: This systematic review critically discussed the potential pharmacological benefits of lupeol and its derivatives as evidenced by various cellular and animal model studies. To gain insight into the pharmacological effects of lupeol, the network pharmacological approach is applied. Pharmacokinetics and recent developments in nanotechnology-based approaches to targeted delivery of lupeol along with its safety use are also discussed. METHODS: This study is dependent on the systematic and non-exhaustive literature survey for related research articles, papers, and books on the chemistry, pharmacological benefits, pharmacokinetics, and safety of lupeol published between 2011 and 2021. For online materials, the popular academic search engines viz. Google Scholar, PubMed, Science Direct, Scopus, ResearchGate, Springer, as well as official websites were explored with selected keywords. RESULTS: Lupeol has shown promising benefits in the management of cancer and many other human diseases such as diabetes, obesity, cardiovascular diseases, kidney and liver problems, skin diseases, and neurological disorders. The pharmacological effects of lupeol primarily rely on its capacity to revitalize the cellular antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Network pharmacological approach revealed some prospective molecular targets and pathways and presented some significant information that could help explain the pharmacological effects of lupeol and its derivatives. Despite significant progress in molecular pharmacology, the clinical application of lupeol is limited due to poor bioavailability and insufficient knowledge on its mode of action. Structural modification and nanotechnology-guided targeted delivery of lupeol improve the bioavailability and bioactivity of lupeol. CONCLUSION: The pentacyclic triterpene lupeol possesses numerous human health-benefiting properties. This review updates current knowledge and critically discusses the pharmacological effects and potential applications of lupeol and its derivatives in human health and diseases. Future studies are needed to evaluate the efficacies of lupeol and its derivatives in the management and pathobiology of human diseases.

13.
Front Cell Dev Biol ; 10: 761080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155422

RESUMEN

The key tumor suppressor protein p53, additionally known as p53, represents an attractive target for the development and management of anti-cancer therapies. p53 has been implicated as a tumor suppressor protein that has multiple aspects of biological function comprising energy metabolism, cell cycle arrest, apoptosis, growth and differentiation, senescence, oxidative stress, angiogenesis, and cancer biology. Autophagy, a cellular self-defense system, is an evolutionarily conserved catabolic process involved in various physiological processes that maintain cellular homeostasis. Numerous studies have found that p53 modulates autophagy, although the relationship between p53 and autophagy is relatively complex and not well understood. Recently, several experimental studies have been reported that p53 can act both an inhibitor and an activator of autophagy which depend on its cellular localization as well as its mode of action. Emerging evidences have been suggested that the dual role of p53 which suppresses and stimulates autophagy in various cencer cells. It has been found that p53 suppression and activation are important to modulate autophagy for tumor promotion and cancer treatment. On the other hand, activation of autophagy by p53 has been recommended as a protective function of p53. Therefore, elucidation of the new functions of p53 and autophagy could contribute to the development of novel therapeutic approaches in cancer biology. However, the underlying molecular mechanisms of p53 and autophagy shows reciprocal functional interaction that is a major importance for cancer treatment and manegement. Additionally, several synthetic drugs and phytochemicals have been targeted to modulate p53 signaling via regulation of autophagy pathway in cancer cells. This review emphasizes the current perspectives and the role of p53 as the main regulator of autophagy-mediated novel therapeutic approaches against cancer treatment and managements.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35162887

RESUMEN

Both acute and chronic kidney diseases substantially contribute to the morbidities and mortality of patients worldwide. The existing therapeutics, which are mostly developed from synthetic sources, present some unexpected effects in patients, provoking researchers to explore potential novel alternatives. Natural products that have protective effects against various renal pathologies could be potential drug candidates for kidney diseases. Mangiferin is a natural polyphenol predominantly isolated from Mangifera indica and possesses multiple health benefits against various human ailments, including kidney disease. The main objective of this review is to update the renoprotective potentials of mangiferin with underlying molecular pharmacology and to highlight the recent development of mangiferin-based therapeutics toward kidney problems. Literature published over the past decade suggests that treatment with mangiferin attenuates renal inflammation and oxidative stress, improves interstitial fibrosis and renal dysfunction, and ameliorates structural alteration in the kidney. Therefore, mangiferin could be used as a multi-target therapeutic candidate to treat renal diseases. Although mangiferin-loaded nanoparticles have shown therapeutic promise against various human diseases, there is limited information on the targeted delivery of mangiferin in the kidney. Further research is required to gain insight into the molecular pharmacology of mangiferin targeting kidney diseases and translate the preclinical results into clinical use.


Asunto(s)
Mangifera , Xantonas , Humanos , Mangifera/química , Estrés Oxidativo , Extractos Vegetales/farmacología , Xantonas/química , Xantonas/farmacología , Xantonas/uso terapéutico
15.
Plants (Basel) ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34961289

RESUMEN

Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1ß, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.

16.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361023

RESUMEN

Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Riñón/efectos de los fármacos , Resveratrol/farmacología , Envejecimiento/metabolismo , Animales , Humanos , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Sirtuina 1/metabolismo
17.
Toxics ; 9(8)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34437506

RESUMEN

Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases, characterized by memory dysfunction and the presence of hyperphosphorylated tau and amyloid ß (Aß) aggregates in multiple brain regions, including the hippocampus and cortex. The exact etiology of AD has not yet been confirmed. However, epidemiological reports suggest that populations who were exposed to environmental hazards are more likely to develop AD than those who were not. Arsenic (As) is a naturally occurring environmental risk factor abundant in the Earth's crust, and human exposure to As predominantly occurs through drinking water. Convincing evidence suggests that As causes neurotoxicity and impairs memory and cognition, although the hypothesis and molecular mechanism of As-associated pathobiology in AD are not yet clear. However, exposure to As and its metabolites leads to various pathogenic events such as oxidative stress, inflammation, mitochondrial dysfunctions, ER stress, apoptosis, impaired protein homeostasis, and abnormal calcium signaling. Evidence has indicated that As exposure induces alterations that coincide with most of the biochemical, pathological, and clinical developments of AD. Here, we overview existing literature to gain insights into the plausible mechanisms that underlie As-induced neurotoxicity and the subsequent neurological deficits in AD. Prospective strategies for the prevention and management of arsenic exposure and neurotoxicity have also been discussed.

18.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445781

RESUMEN

The prevalence of chronic kidney disease (CKD) is increasing worldwide, and a close association between acute kidney injury (AKI) and CKD has recently been identified. Black cumin (Nigella sativa) has been shown to be effective in treating various kidney diseases. Accumulating evidence shows that black cumin and its vital compound, thymoquinone (TQ), can protect against kidney injury caused by various xenobiotics, namely chemotherapeutic agents, heavy metals, pesticides, and other environmental chemicals. Black cumin can also protect the kidneys from ischemic shock. The mechanisms underlying the kidney protective potential of black cumin and TQ include antioxidation, anti-inflammation, anti-apoptosis, and antifibrosis which are manifested in their regulatory role in the antioxidant defense system, NF-κB signaling, caspase pathways, and TGF-ß signaling. In clinical trials, black seed oil was shown to normalize blood and urine parameters and improve disease outcomes in advanced CKD patients. While black cumin and its products have shown promising kidney protective effects, information on nanoparticle-guided targeted delivery into kidney is still lacking. Moreover, the clinical evidence on this natural product is not sufficient to recommend it to CKD patients. This review provides insightful information on the pharmacological benefits of black cumin and TQ against kidney damage.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Benzoquinonas/farmacología , Riñón/efectos de los fármacos , Nigella sativa/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Humanos , Transducción de Señal/efectos de los fármacos
19.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281289

RESUMEN

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA's involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA's position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.


Asunto(s)
Ácido Cítrico/metabolismo , Ácido Cítrico/farmacología , Plantas/efectos de los fármacos , Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Sequías , Ingeniería Genética , Respuesta al Choque Térmico/efectos de los fármacos , Inactivación Metabólica , Metales Pesados/farmacocinética , Metales Pesados/toxicidad , Modelos Biológicos , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/efectos de los fármacos , Estrés Fisiológico/genética
20.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203830

RESUMEN

Insulin is a polypeptide hormone mainly secreted by ß cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


Asunto(s)
Enfermedad , Salud , Insulina/metabolismo , Animales , Humanos , Secreción de Insulina , Hígado/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...