Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Int ; 147: 106322, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33348102

RESUMEN

Oily seafood is an important food source which contains several key nutrients beneficial for human health. On the other hand, oily seafood also contains persistent organic pollutants (POPs), including the dioxin-like compounds (DLCs) polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like-polychlorinated biphenyls (dl-PCBs), potentially detrimental to human health. For a comprehensive comparison of the beneficial and potentially adverse health effects of seafood consumption, risk-benefit analyses are necessary. Risk-benefit analyses require reliable quantitative data and sound knowledge of uncertainties and potential biases. Our dataset comprised more than 4000 analyses of DLCs and more than 1000 analyses each of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and vitamin D in the three most important Norwegian commercial oily seafood species: Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus) and farmed Atlantic salmon (Salmo salar). The levels of several DLC congeners were below the limit of quantification (LOQ), making estimation of true levels challenging. We demonstrate that the use of upper bound substitution of censored data will overestimate, while lower bound substitution will underestimate the actual levels of DLCs. Therefore, we implement an alternative robust statistical method by combining Maximum Likelihood Estimation, Regression on Order Statistics and Kaplan-Meier analyses, which is better suited for providing estimations of levels of these contaminants in seafood. Moreover, we illustrate the impact of the toxic equivalency factor (TEF) system on estimation of the sums of DLCs by comparing the TEF system to an alternative system of relative effect potency (REP) factors (Consensus Toxicity Factors). The levels of nutrients and contaminants were related to adequate intake (AI) and tolerable weekly intake (TWI), respectively. We used AI and the TWI values established by the European Food Safety Authority (EFSA). The benefit and the risk were further viewed in the context of the Norwegian average intake of oily fish, and the Norwegian governmental official dietary recommendations of oily fish. Our results showed that both benefit and risk are met at the levels found of nutrients and DLCs in oily seafood. The comprehensive quantitative data presented here will be a key for future risk-benefit assessment of oily fish consumption. Together, our results underline that a refined formalized integrative risk-benefit assessment of oily fish in the diet is warranted, and that the data and methodology presented in this study are highly relevant for future integrated and multidisciplinary assessment of both risks and benefits of seafood consumption for human health.


Asunto(s)
Dioxinas , Ácidos Grasos Omega-3 , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animales , Dibenzofuranos , Dioxinas/análisis , Dioxinas/toxicidad , Ácidos Grasos Omega-3/análisis , Contaminación de Alimentos/análisis , Humanos , Noruega , Nutrientes , Bifenilos Policlorados/análisis , Medición de Riesgo , Alimentos Marinos/análisis , Vitamina D
2.
J Fish Dis ; 34(6): 453-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21545439

RESUMEN

The duration of efficacy of emamectin benzoate in the control of Caligus curtus infestations in Atlantic cod, Gadus morhua L., was studied following an administration of 50 µg kg⁻¹ for seven consecutive days. No lice were found on medicated fish when challenged 1 week (challenge 1) or 5 weeks (challenge 2) following termination of medication, whereas the mean abundance of lice among the unmedicated fish was 17.9 and 19.3 lice per fish in challenge 1 and 2, respectively. Muscle concentrations of 19.5 ± 8.2 ng g⁻¹ and 3.4 ± 0.9 ng g⁻¹, respectively, and skin concentrations of 23.1 ± 10.8 and 4.2 ± 1.0 ng g⁻¹, respectively, were found 27 and 55 days following the termination of medication. Tissue concentrations and the duration of efficacy indicate a dosing regime for emamectin in cod, similar to the regime used for Atlantic salmon, Salmo salar L.


Asunto(s)
Antiparasitarios/uso terapéutico , Copépodos/efectos de los fármacos , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/tratamiento farmacológico , Gadus morhua , Ivermectina/análogos & derivados , Animales , Antiparasitarios/administración & dosificación , Acuicultura , Infestaciones Ectoparasitarias/tratamiento farmacológico , Infestaciones Ectoparasitarias/parasitología , Enfermedades de los Peces/parasitología , Ivermectina/administración & dosificación , Ivermectina/uso terapéutico , Músculos/metabolismo , Noruega , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA