Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Res ; 24(1): 303, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044426

RESUMEN

BACKGROUND: Increased airway NLRP3 inflammasome-mediated IL-1ß responses may underpin severe neutrophilic asthma. However, whether increased inflammasome activation is unique to severe asthma, is a common feature of immune cells in all inflammatory types of severe asthma, and whether inflammasome activation can be therapeutically targeted in patients, remains unknown. OBJECTIVE: To investigate the activation and inhibition of inflammasome-mediated IL-1ß responses in immune cells from patients with asthma. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with non-severe (n = 59) and severe (n = 36 stable, n = 17 exacerbating) asthma and healthy subjects (n = 39). PBMCs were stimulated with nigericin or lipopolysaccharide (LPS) alone, or in combination (LPS + nigericin), with or without the NLRP3 inhibitor MCC950, and the effects on IL-1ß release were assessed. RESULTS: PBMCs from patients with non-severe or severe asthma produced more IL-1ß in response to nigericin than those from healthy subjects. PBMCs from patients with severe asthma released more IL-1ß in response to LPS + nigericin than those from non-severe asthma. Inflammasome-induced IL-1ß release from PBMCs from patients with severe asthma was not increased during exacerbation compared to when stable. Inflammasome-induced IL-1ß release was not different between male and female, or obese and non-obese patients and correlated with eosinophil and neutrophil numbers in the airways. MCC950 effectively suppressed LPS-, nigericin-, and LPS + nigericin-induced IL-1ß release from PBMCs from all groups. CONCLUSION: An increased ability for inflammasome priming and/or activation is a common feature of systemic immune cells in both severe and non-severe asthma, highlighting inflammasome inhibition as a universal therapy for different subtypes of disease.


Asunto(s)
Asma , Inflamasomas , Humanos , Masculino , Femenino , Proteína con Dominio Pirina 3 de la Familia NLR , Nigericina/farmacología , Lipopolisacáridos , Leucocitos Mononucleares , Interleucina-1beta , Asma/diagnóstico , Asma/tratamiento farmacológico , Sulfonamidas
2.
Nat Commun ; 14(1): 7349, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963864

RESUMEN

Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Animales , Ratones , Triptasas/genética , Receptor Toll-Like 7/genética , Imiquimod , Pulmón , Enfisema Pulmonar/genética , Nicotiana , Ratones Endogámicos C57BL
3.
Nat Commun ; 14(1): 5666, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723181

RESUMEN

TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients. The contribution of TBK1/IKKε signalling to these responses is unknown. Here we find that the small molecule idronoxil inhibits TBK1/IKKε signalling through destabilisation of TBK1/IKKε protein complexes. Treatment with idronoxil, or the small molecule inhibitor MRT67307, suppresses TBK1/IKKε signalling and attenuates cellular and molecular lung inflammation in SARS-CoV-2-challenged mice. Our findings additionally demonstrate that engagement of STING is not the major driver of these inflammatory responses and establish a critical role for TBK1/IKKε signalling in SARS-CoV-2 hyper-inflammation.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Ratones , Quinasa I-kappa B , Modelos Animales de Enfermedad , SARS-CoV-2 , Inflamación
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3595-3603, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37266589

RESUMEN

Lung cancer (LC) is the leading cause of cancer-related deaths globally. It accounts for more than 1.9 million cases each year due to its complex and poorly understood molecular mechanisms that result in unregulated cell proliferation and metastasis. ß-Catenin is a developmentally active protein that controls cell proliferation, metastasis, polarity and cell fate during homeostasis and aids in cancer progression via epithelial-mesenchymal transition. Therefore, inhibition of the ß-catenin pathway could attenuate the progression of LC. Berberine, an isoquinoline alkaloid which is known for its anti-cancer and anti-inflammatory properties, demonstrates poor solubility and bioavailability. In our study, we have encapsulated berberine into liquid crystalline nanoparticles to improve its physiochemical functions and studied if these nanoparticles target the ß-catenin pathway to inhibit the human lung adenocarcinoma cell line (A549) at both gene and protein levels. We observed for the first time that berberine liquid crystalline nanoparticles at 5 µM significantly attenuate the expression of the ß-catenin gene and protein. The interaction between berberine and ß-catenin was further validated by molecular simulation studies. Targeting ß-catenin with berberine nanoparticles represents a promising strategy for the management of lung cancer progression.


Asunto(s)
Adenocarcinoma del Pulmón , Berberina , Neoplasias Pulmonares , Nanoestructuras , Humanos , beta Catenina/metabolismo , Transición Epitelial-Mesenquimal , Berberina/farmacología , Berberina/uso terapéutico , Cateninas/metabolismo , Vía de Señalización Wnt , Proliferación Celular , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular
6.
Nat Commun ; 14(1): 3513, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316487

RESUMEN

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.


Asunto(s)
COVID-19 , Interferón Tipo I , Trombosis , Humanos , Anticoagulantes , Tromboplastina , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Escherichia coli , Inflamación , Lipopolisacáridos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , Caspasas
7.
Life Sci ; 326: 121787, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209867

RESUMEN

Lung cancer has the highest mortality rate compared to any other cancer worldwide, and cigarette smoking is one of the major etiological factors. How cigarette smoke (CS) induces tumorigenesis in healthy cells is still not completely understood. In this study, we treated healthy human bronchial epithelial cells (16HBE14o) with 1 % cigarette smoke extract (CSE) for one week. The CSE exposed cells showed upregulation of WNT/ß-catenin pathway genes like WNT3, DLV3, AXIN and ß-catenin, 30 oncology proteins were found to be upregulated after CSE treatment. Further, we explored whether the role of extracellular vesicles (EVs) obtained from CSE exposed cells can induce tumorigenesis. We observed that CSE EVs induced migration of healthy 16HBE14o cells by upregulation of various oncology proteins in recipient cells like AXL, EGFR, DKK1, ENG, FGF2, ICAM1, HMOX1, HIF1a, SERPINE1, SNAIL, HGFR, PLAU which are related to WNT signaling, epithelial mesenchymal transition (EMT) and Inflammation, whereas inflammatory marker, GAL-3 and EMT marker, VIM were downregulated. Moreover, ß-catenin RNA was found in CSE EVs, upon treatment of these EVs to healthy cells, the ß-catenin gene level was decreased in recipient cells compared to healthy 16HBE14o cells, indicating the utilisation of ß-catenin RNA in healthy cells. Overall, our study suggests that CS treatment can induce tumorigenesis of healthy cells by upregulating WNT/ß-catenin signaling in vitro and human lung cancer patients. Therefore targeting the WNT/ß-catenin signaling pathway is involved in tumorigenesis inhibition of this pathway could be a potential therapeutic approach for cigarette smoke induced lung cancer.


Asunto(s)
Fumar Cigarrillos , Neoplasias Pulmonares , Humanos , Vía de Señalización Wnt , Fumar Cigarrillos/efectos adversos , beta Catenina/genética , beta Catenina/metabolismo , Regulación hacia Arriba , Nicotiana , Neoplasias Pulmonares/inducido químicamente , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal , ARN
8.
J Inflamm (Lond) ; 20(1): 11, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941580

RESUMEN

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.

9.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834913

RESUMEN

Lung cancer is the leading cause of cancer-related deaths globally, in part due to a lack of early diagnostic tools and effective pharmacological interventions. Extracellular vesicles (EVs) are lipid-based membrane-bound particles released from all living cells in both physiological and pathological states. To understand the effects of lung-cancer-derived EVs on healthy cells, we isolated and characterized EVs derived from A549 lung adenocarcinoma cells and transferred them to healthy human bronchial epithelial cells (16HBe14o). We found that A549-derived EVs carry oncogenic proteins involved in the pathway of epithelial to mesenchymal transition (EMT) that are regulated by ß-catenin. The exposure of 16HBe14o cells to A549-derived EVs resulted in a significant increase in cell proliferation, migration, and invasion via upregulating EMT markers such as E-Cadherin, Snail, and Vimentin and cell adhesion molecules such as CEACAM-5, ICAM-1, and VCAM-1, with concomitant downregulation of EpCAM. Our study suggests a role for cancer-cell-derived EVs to induce tumorigenesis in adjacent healthy cells by promoting EMT via ß-catenin signaling.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , beta Catenina/metabolismo , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Transducción de Señal
10.
Eur Respir J ; 61(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36549711

RESUMEN

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Pulmón , Muerte Celular , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
11.
Am J Respir Crit Care Med ; 207(5): 553-565, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170617

RESUMEN

Rationale: Tissue-resident natural killer (trNK) cells have been identified in numerous organs, but little is known about their functional contribution to respiratory immunity, in particular during chronic lung diseases such as chronic obstructive pulmonary disease (COPD). Objectives: To investigate the phenotype and antiviral responses of trNK cells in murine cigarette smoke-induced experimental COPD and in human lung parenchyma from COPD donors. Methods: Mice were exposed to cigarette smoke for 12 weeks to induce COPD-like lung disease. Lung trNK cell phenotypes and function were analyzed by flow cytometry in both murine and human disease with and without challenge with influenza A virus. Measurements and Main Results: In the mouse lung, CD49a+CD49b+EOMES+ and CD49a+CD49b-EOMESlo NK cell populations had a distinct phenotype compared with CD49a- circulating NK cells. CD49a+ NK cells were more extensively altered earlier in disease onset than circulating NK cells, and increased proportions of CD49a+ NK cells correlated with worsening disease in both murine and human COPD. Furthermore, the presence of lung disease delayed both circulating and trNK cell functional responses to influenza infection. CD49a+ NK cells markedly increased their NKG2D, CD103, and CD69 expression in experimental COPD after influenza infection, and human CD49a+ NK cells were hyperactive to ex vivo influenza infection in COPD donors. Conclusions: Collectively, these results demonstrate that trNK cell function is altered in cigarette smoke-induced disease and suggests that smoke exposure may aberrantly prime trNK cell responsiveness to viral infection. This may contribute to excess inflammation during viral exacerbations of COPD.


Asunto(s)
Gripe Humana , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Integrina alfa1/metabolismo , Gripe Humana/metabolismo , Integrina alfa2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Asesinas Naturales , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Antivirales
12.
Mucosal Immunol ; 15(6): 1405-1415, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36411332

RESUMEN

Multiple SARS-CoV-2 vaccine candidates have been approved for use and have had a major impact on the COVID-19 pandemic. There remains, however, a significant need for vaccines that are safe, easily transportable and protective against infection, as well as disease. Mucosal vaccination is favored for its ability to induce immune memory at the site of infection, making it appealing for SARS-CoV-2 vaccine strategies. In this study we performed in-depth analysis of the immune responses in mice to a subunit recombinant spike protein vaccine formulated with the delta-inulin adjuvant Advax when administered intratracheally (IT), versus intramuscular delivery (IM). Both routes produced robust neutralizing antibody titers (NAb) and generated sterilizing immunity against SARS-CoV-2. IT delivery, however, produced significantly higher systemic and lung-local NAb that resisted waning up to six months post vaccination, and only IT delivery generated inducible bronchus-associated lymphoid tissue (iBALT), a site of lymphocyte antigen presentation and proliferation. This was coupled with robust and long-lasting lung tissue-resident memory CD4+ and CD8+ T cells that were not observed in IM-vaccinated mice. This study provides a detailed view of the lung-resident cellular response to IT vaccination against SARS-CoV-2 and demonstrates the importance of delivery site selection in the development of vaccine candidates.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Humanos , Inulina , Vacunas contra la COVID-19 , Linfocitos T CD8-positivos , Memoria Inmunológica , Pandemias , COVID-19/prevención & control , Inmunización , Vacunas Sintéticas , Vacunación , Adyuvantes Inmunológicos , Mucosa Gástrica , Pulmón
13.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35777766

RESUMEN

BACKGROUND: COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS: We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS: The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION: CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Animales , Ratones , Quimasas/metabolismo , Mastocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Enfisema Pulmonar/etiología , Pulmón , Enfisema/complicaciones , Inflamación/metabolismo , Ratones Endogámicos C57BL
14.
Am J Respir Crit Care Med ; 206(6): 712-729, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35549656

RESUMEN

Rationale: Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. Objectives: To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. Methods: We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation. We correlated changes with viral titers, proinflammatory responses, and IFN production. Measurements and Main Results: Single-cell RNA sequencing revealed that COPD pBECs had 24-fold greater infection than healthy cells, which was supported by plaque assays. Club/goblet and basal cells were the predominant populations infected and expressed mRNAs involved in viral replication. Proteases involved in SARS-CoV-2 entry/infection (TMPRSS2 and CTSB) were increased, and protease inhibitors (serpins) were downregulated more so in COPD. Inflammatory cytokines linked to COPD exacerbations and severe COVID-19 were increased, whereas IFN responses were blunted. Coexpression analysis revealed a prominent population of club/goblet cells with high type 1/2 IFN responses that were important drivers of immune responses to infection in both healthy and COPD pBECs. Therapeutic inhibition of proteases and inflammatory imbalances reduced viral titers and cytokine responses, particularly in COPD pBECs. Conclusions: COPD pBECs are more susceptible to SARS-CoV-2 infection because of increases in coreceptor expression and protease imbalances and have greater inflammatory responses. A prominent cluster of IFN-responsive club/goblet cells emerges during infection, which may be important drivers of immunity. Therapeutic interventions suppress SARS-CoV-2 replication and consequent inflammation.


Asunto(s)
COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Serpinas , Citocinas , Células Epiteliales , Humanos , Péptido Hidrolasas , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , SARS-CoV-2 , Análisis de Secuencia de ARN , Serpinas/farmacología , Serpinas/uso terapéutico
15.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613693

RESUMEN

Bifidobacterium are prominent gut commensals that produce the short-chain fatty acid (SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung, termed the gut-lung axis, are regulated by the microbiome. The gut-lung axis is increasingly implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated with depletion of Bifidobacterium species. In this study, we assessed the impact of acetate-producing Bifidobacterium longum subsp. longum (WT) and a mutant strain with an impaired acetate production capacity (MUT) on cigarette smoke-induced inflammation. The mice were treated with WT or MUT B. longum subsp. longum and exposed to cigarette smoke for 8 weeks before assessments of lung inflammation, lung tissue gene expression and cecal SCFAs were performed. Both strains of B. longum subsp. longum reduced lung inflammation, inflammatory cytokine expression and adhesion factor expression and alleviated cigarette smoke-induced depletion in caecum butyrate. Thus, the probiotic administration of B. longum subsp. longum, irrespective of its acetate-producing capacity, alleviated cigarette smoke-induced inflammation and the depletion of cecal butyrate levels.


Asunto(s)
Fumar Cigarrillos , Probióticos , Ratones , Animales , Bifidobacterium , Probióticos/farmacología , Butiratos , Acetatos , Inflamación
16.
NPJ Vaccines ; 6(1): 143, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848711

RESUMEN

Global control of COVID-19 requires broadly accessible vaccines that are effective against SARS-CoV-2 variants. In this report, we exploit the immunostimulatory properties of bacille Calmette-Guérin (BCG), the existing tuberculosis vaccine, to deliver a vaccination regimen with potent SARS-CoV-2-specific protective immunity. Combination of BCG with a stabilised, trimeric form of SARS-CoV-2 spike antigen promoted rapid development of virus-specific IgG antibodies in the blood of vaccinated mice, that was further augmented by the addition of alum. This vaccine formulation, BCG:CoVac, induced high-titre SARS-CoV-2 neutralising antibodies (NAbs) and Th1-biased cytokine release by vaccine-specific T cells, which correlated with the early emergence of T follicular helper cells in local lymph nodes and heightened levels of antigen-specific plasma B cells after vaccination. Vaccination of K18-hACE2 mice with a single dose of BCG:CoVac almost completely abrogated disease after SARS-CoV-2 challenge, with minimal inflammation and no detectable virus in the lungs of infected animals. Boosting BCG:CoVac-primed mice with a heterologous vaccine further increased SARS-CoV-2-specific antibody responses, which effectively neutralised B.1.1.7 and B.1.351 SARS-CoV-2 variants of concern. These findings demonstrate the potential for BCG-based vaccination to protect against major SARS-CoV-2 variants circulating globally.

17.
Immunity ; 54(12): 2908-2921.e6, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34788600

RESUMEN

Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.


Asunto(s)
Betacoronavirus/fisiología , Vacunas contra la COVID-19/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Secuencia Conservada/genética , Evolución Molecular , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Desarrollo de Vacunas
18.
Pharmacol Ther ; 225: 107839, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33774068

RESUMEN

Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-ß induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.


Asunto(s)
Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/fisiopatología , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/tratamiento farmacológico , Asma/fisiopatología , Proteínas de Unión al Calcio/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos , Fibrosis/fisiopatología , Glicoproteínas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/fisiopatología , Metaloproteinasas de la Matriz/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Factor de Crecimiento Transformador beta
19.
Life Sci ; 276: 119436, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33789146

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the major causes of cancer-related mortality globally. Despite the availability of therapeutic options, the improvement in patient survival is yet to be achieved. Recent advances in natural product (e.g., Rutin) research, therapeutic nanotechnology and especially the combination of both could aid in achieving significant improvements in the treatment or management of NSCLC. In this study, we explore the anti-cancer activity of Rutin-loaded liquid crystalline nanoparticles (LCNs) in an in vitro model where we have employed the A549 human lung epithelial carcinoma cell line. The anti-proliferative activity was determined by MTT and Trypan blue assays, whereas, the anti-migratory activity was evaluated by the scratch wound healing assay and a modified Boyden chamber assay. We also evaluated the anti-apoptotic activity by Annexin V-FITC staining, and the colony formation activity was studied using crystal violet staining. Here, we report that Rutin-LCNs showed promising anti-proliferative and anti-migratory activities. Furthermore, Rutin-LCNs also induced apoptosis in the A549 cells and inhibited colony formation. The findings warrant further detailed and in-depth anti-cancer mechanistic studies of Rutin-LCNs with a focus towards a potential therapeutic option for NSCLC. LCNs may help to enhance the solubility of Rutin used in the treatment of lung cancer and hence enhance the anticancer effect of Rutin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Movimiento Celular , Proliferación Celular , Cristales Líquidos/química , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/administración & dosificación , Rutina/farmacología , Células A549 , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/patología , Nanopartículas/química , Rutina/administración & dosificación , Rutina/química
20.
Clin Transl Immunology ; 10(2): e1247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614031

RESUMEN

Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome-induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress- and inflammasome-related inflammatory disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...