Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Neurol ; 94(6): 1067-1079, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37605937

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) is a degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. It has been hypothesized that hypoxia plays a role in the pathogenesis of MS. This study was undertaken to investigate the reproducibility of non-invasively measured cortical microvascular hemoglobin oxygenation (St O2 ) using frequency domain near-infrared spectroscopy (fdNIRS), investigate its temporal pattern of hypoxia in people with MS (pwMS), and its relationship with neurocognitive function and mood. METHODS: We investigated the reproducibility of fdNIRS measurements. We measured cortical hypoxia in pwMS, and the relationships between St O2 , neurocognitive function, fatigue, and measures of physical disability. Furthermore, we cataloged the temporal pattern of St O2 measured at 1-week intervals for 4 weeks, and at 8 weeks and ~1 year. RESULTS: We show that fdNIRS parameters were highly reproducible in 7 healthy control participants measured over 6 days (p > 0.05). There was low variability between and within subjects. In line with our previous findings, we show that 33% of pwMS (n = 88) have cortical microvascular hypoxia. Over 8 weeks and at ~1 year, St O2 values for normoxic and hypoxic groups did not change significantly. There was no significant association between cognitive function and St O2 . This conclusion should be revisited as only a small proportion of the relapsing-remitting MS group (21%) was cognitively impaired. INTERPRETATION: The fdNIRS parameters have high reproducibility and repeatability, and we have demonstrated that hypoxia in MS is a chronic condition, lasting at least a year. The results show a weak relationship between cognitive functioning and oxygenation, indicating future study is required. ANN NEUROL 2023;94:1067-1079.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Reproducibilidad de los Resultados , Fatiga/etiología , Hipoxia
2.
J Neurol ; 270(7): 3303-3314, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210689

RESUMEN

OBJECTIVE: Systemic hypoxia occurs in COVID-19 infection; however, it is unknown if cerebral hypoxia occurs in convalescent individuals. We have evidence from other conditions associated with central nervous system inflammation that hypoxia may occur in the brain. If so, hypoxia could reduce the quality of life and brain function. This study was undertaken to assess if brain hypoxia occurs in individuals after recovery from acute COVID-19 infection and if this hypoxia is associated with neurocognitive impairment and reduced quality of life. METHODS: Using frequency-domain near-infrared spectroscopy (fdNIRS), we measured cerebral tissue oxygen saturation (StO2) (a measure of hypoxia) in participants who had contracted COVID-19 at least 8 weeks prior to the study visit and healthy controls. We also conducted neuropsychological assessments and health-related quality of life assessments, fatigue, and depression. RESULTS: Fifty-six percent of the post-COVID-19 participants self-reported having persistent symptoms (from a list of 18), with the most reported symptom being fatigue and brain fog. There was a gradation in the decrease of oxyhemoglobin between controls, and normoxic and hypoxic post-COVID-19 groups (31.7 ± 8.3 µM, 27.8 ± 7.0 µM and 21.1 ± 7.2 µM, respectively, p = 0.028, p = 0.005, and p = 0.081). We detected that 24% of convalescent individuals' post-COVID-19 infection had reduced StO2 in the brain and that this relates to reduced neurological function and quality of life. INTERPRETATION: We believe that the hypoxia reported here will have health consequences for these individuals, and this is reflected in the correlation of hypoxia with greater symptomology. With the fdNIRS technology, combined with neuropsychological assessment, we may be able to identify individuals at risk of hypoxia-related symptomology and target individuals that are likely to respond to treatments aimed at improving cerebral oxygenation.


Asunto(s)
COVID-19 , Hipoxia Encefálica , Humanos , Oxígeno , Calidad de Vida , COVID-19/complicaciones , Hipoxia Encefálica/complicaciones , Hipoxia Encefálica/diagnóstico por imagen , Hipoxia , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA