Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Assist Reprod Genet ; 38(11): 3027-3038, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34599460

RESUMEN

PURPOSE: To evaluate whether young women with idiopathic early ovarian aging, as defined by producing fewer oocytes than expected for a given age over multiple in vitro fertilization (IVF) cycles, have changes in telomere length and epigenetic age indicating accelerated biological aging (i.e., increased risk of morbidity and mortality). METHODS: A prospective cohort study was conducted at two Danish public fertility clinics. A total of 55 young women (≤ 37 years) with at least two IVF cycles with ≤ 5 harvested oocytes despite sufficient stimulation with follicle-stimulating hormone (FSH) were included in the early ovarian aging group. As controls, 52 young women (≤ 37 years) with normal ovarian function, defined by at least eight harvested oocytes, were included. Relative telomere length (rTL) and epigenetic age acceleration (AgeAccel) were measured in white blood cells as markers of premenopausal accelerated biological aging. RESULTS: rTL was comparable with a mean of 0.46 (± SD 0.12) in the early ovarian aging group and 0.47 (0.14) in the normal ovarian aging group. The AgeAccel of the early ovarian aging group was, insignificantly, 0.5 years older, but this difference disappeared when adjusting for chronological age. Sub-analysis using Anti-Müllerian hormone (AMH) as selection criterion for the two groups did not change the results. CONCLUSION: We did not find any indications of accelerated aging in whole blood from young women with idiopathic early ovarian aging. Further investigations in a similar cohort of premenopausal women or other tissues are needed to fully elucidate the potential relationship between premenopausal accelerated biological aging and early ovarian aging.


Asunto(s)
Envejecimiento , Oocitos/patología , Enfermedades del Ovario/patología , Folículo Ovárico/patología , Reserva Ovárica , Premenopausia , Homeostasis del Telómero , Adulto , Anciano , Hormona Antimülleriana/sangre , Estudios de Casos y Controles , Metilación de ADN , Femenino , Fertilización In Vitro , Hormona Folículo Estimulante/sangre , Humanos , Embarazo , Índice de Embarazo , Estudios Prospectivos , Inyecciones de Esperma Intracitoplasmáticas
2.
Sci Rep ; 11(1): 17463, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465810

RESUMEN

Spermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of SMOX gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified SMOX locus (P = 1.34 × 10-49) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P = 8.48 × 10-28) and adults (P = 2.748 × 10-8) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana/métodos , Neoplasias/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adulto , Regulación Neoplásica de la Expresión Génica , Humanos , Recién Nacido , Neoplasias/etiología , Neoplasias/metabolismo , Fenotipo , Poliamino Oxidasa
3.
Nat Genet ; 51(3): 431-444, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804558

RESUMEN

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Dinamarca , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Herencia Multifactorial/genética , Fenotipo , Factores de Riesgo
4.
Nat Genet ; 51(1): 63-75, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478444

RESUMEN

Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Encéfalo/fisiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Riesgo
5.
PLoS One ; 13(12): e0208829, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30543675

RESUMEN

Mitochondrial DNA (mtDNA) haplogroups (hgs) are evolutionarily conserved sets of mtDNA SNP-haplotypes with characteristic geographical distribution. Associations of hgs with disease and physiological characteristics have been reported, but have frequently not been reproducible. Using 418 mtDNA SNPs on the PsychChip (Illumina), we assessed the spatio-temporal distribution of mtDNA hgs in Denmark from DNA isolated from 24,642 geographically un-biased dried blood spots (DBS), collected from 1981 to 2005 through the Danish National Neonatal Screening program. ADMIXTURE was used to establish the genomic ancestry of all samples using a reference of 100K+ autosomal SNPs in 2,248 individuals from nine populations. Median-joining analysis determined that the hgs were highly variable, despite being typically Northern European in origin, suggesting multiple founder events. Furthermore, considerable heterogeneity and variation in nuclear genomic ancestry was observed. Thus, individuals with hg H exhibited 95%, and U hgs 38.2% - 92.5%, Danish ancestry. Significant clines between geographical regions and rural and metropolitan populations were found. Over 25 years, macro-hg L increased from 0.2% to 1.2% (p = 1.1*E-10), and M from 1% to 2.4% (p = 3.7*E-8). Hg U increased among the R macro-hg from 14.1% to 16.5% (p = 1.9*E-3). Genomic ancestry, geographical skewedness, and sub-hg distribution suggested that the L, M and U increases are due to immigration. The complex spatio-temporal dynamics and genomic ancestry of mtDNA in the Danish population reflect repeated migratory events and, in later years, net immigration. Such complexity may explain the often contradictory and population-specific reports of mito-genomic association with disease.


Asunto(s)
ADN Mitocondrial , Haplotipos , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Dinamarca , Genética de Población , Humanos
6.
PLoS One ; 13(12): e0208828, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532134

RESUMEN

Mitochondria play a significant role in human diseases. However, disease associations with mitochondrial DNA (mtDNA) SNPs have proven difficult to replicate. An analysis of eight schizophrenia-associated mtDNA SNPs, in 23,743 Danes without a psychiatric diagnosis and 2,538 schizophrenia patients, revealed marked inter-allelic differences in mitochondrial haplogroup affiliation and nuclear ancestry. This bi-genomic dependence could entail population stratification. Only two mitochondrial SNPs, m.15043A and m.15218G, were significantly associated with schizophrenia. However, these associations disappeared when corrected for haplogroup affiliation and nuclear ancestry. The extensive bi-genomic dependence documented here is a major concern when interpreting historic, as well as designing future, mtDNA association studies.


Asunto(s)
ADN Mitocondrial/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino
7.
Mol Genet Metab Rep ; 11: 36-45, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28487825

RESUMEN

AIM: The overall aim of this study is to evaluate whole genome amplification of DNA extracted from dried blood spot samples. We wish to explore ways of optimizing the amplification process, while decreasing the amount of input material and inherently the cost. Our primary focus of optimization is on the amount of input material, the amplification reaction volume, the number of replicates and amplification time and temperature. Increasing the quality of the amplified DNA and the subsequent results of array genotyping is a secondary aim of this project. METHODS: This study is based on DNA extracted from dried blood spot samples. The extracted DNA was subsequently whole genome amplified using the REPLIg kit and genotyped on the PsychArray BeadChip (assessing > 570,000 SNPs genome wide). We used Genome Studio to evaluate the quality of the genotype data by call rates and log R ratios. RESULTS: The whole genome amplification process is robust and does not vary between replicates. Altering amplification time, temperature or number of replicates did not affect our results. We found that spot size i.e. amount of input material could be reduced without compromising the quality of the array genotyping data. We also showed that whole genome amplification reaction volumes can be reduced by a factor of 4, without compromising the DNA quality. DISCUSSION: Whole genome amplified DNA samples from dried blood spots is well suited for array genotyping and produces robust and reliable genotype data. However, the amplification process introduces additional noise to the data, making detection of structural variants such as copy number variants difficult. With this study, we explore ways of optimizing the amplification protocol in order to reduce noise and increase data quality. We found, that the amplification process was very robust, and that changes in amplification time or temperature did not alter the genotyping calls or quality of the array data. Adding additional replicates of each sample also lead to insignificant changes in the array data. Thus, the amount of noise introduced by the amplification process was consistent regardless of changes made to the amplification protocol. We also explored ways of decreasing material expenditure by reducing the spot size or the amplification reaction volume. The reduction did not affect the quality of the genotyping data.

8.
Genome Biol ; 17(1): 206, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27717399

RESUMEN

BACKGROUND: Gestational age is often used as a proxy for developmental maturity by clinicians and researchers alike. DNA methylation has previously been shown to be associated with age and has been used to accurately estimate chronological age in children and adults. In the current study, we examine whether DNA methylation in cord blood can be used to estimate gestational age at birth. RESULTS: We find that gestational age can be accurately estimated from DNA methylation of neonatal cord blood and blood spot samples. We calculate a DNA methylation gestational age using 148 CpG sites selected through elastic net regression in six training datasets. We evaluate predictive accuracy in nine testing datasets and find that the accuracy of the DNA methylation gestational age is consistent with that of gestational age estimates based on established methods, such as ultrasound. We also find that an increased DNA methylation gestational age relative to clinical gestational age is associated with birthweight independent of gestational age, sex, and ancestry. CONCLUSIONS: DNA methylation can be used to accurately estimate gestational age at or near birth and may provide additional information relevant to developmental stage. Further studies of this predictor are warranted to determine its utility in clinical settings and for research purposes. When clinical estimates are available this measure may increase accuracy in the testing of hypotheses related to developmental age and other early life circumstances.


Asunto(s)
Envejecimiento/genética , Biomarcadores/sangre , Metilación de ADN/genética , Edad Gestacional , Adulto , Peso al Nacer , Islas de CpG/genética , Epigénesis Genética , Femenino , Desarrollo Fetal/genética , Humanos , Recién Nacido , Masculino , Embarazo
9.
Mol Genet Metab ; 116(3): 119-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26212339

RESUMEN

A large part of the human genome is transcribed into various forms of RNA, and the global gene expression profile (GEP) has been studied for several years using technology such as RNA-microarrays. In this study, we evaluate whether neonatal dried blood spot (DBS) samples stored in the Danish Neonatal Screening Biobank (DNSB) can be used for GEP. This paper is divided into sub-studies examining the effects of: 1) different whole transcriptome amplification kits (WTA); 2) years of storage and storage in room temperature (RT) versus freezers (-20°C) on DNSB DBS samples; 3) effects of RT storage vs freezer storage on DBS samples from the USA and DNSB, and 4) using smaller disc sizes, thereby decreasing DBS use. We present evidence that reliable and reproducible GEPs can be obtained using neonatal DBS samples. The main source of variation is the storage condition. When samples are stored at -20°C, the dynamic range is increased, and Pearson correlations are higher. Differential analysis reveals no statistically significant differences between samples collected a decade apart and stored at -20°C. However, samples stored at RT show differential expression for a third of the gene-specific probes. Our data also suggests that using alternate WTA kits significantly changes the GEP. Finally, the amount of input material, i.e., the size and number of DBS discs used, can be reduced to preserve this valuable and limited material. We conclude that DNSB DBS samples provide a reproducible resource for GEP. Results are improved if the cards are stored at -20°C. Furthermore, it is important to use a single type of kit for analysis because using alternate kits introduces differential expression.


Asunto(s)
Bancos de Muestras Biológicas , Conservación de la Sangre , Pruebas con Sangre Seca , Perfilación de la Expresión Génica , Estabilidad del ARN , Recolección de Muestras de Sangre , Criopreservación , Dinamarca , Genoma Humano , Humanos , Recién Nacido , Análisis por Micromatrices , Tamizaje Neonatal , Reproducibilidad de los Resultados , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...