Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(10): 12563-12572, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38437157

RESUMEN

Palladium (Pd) hydride-based catalysts have been reported to have excellent performance in the CO2 reduction reaction (CO2RR) and hydrogen evolution reaction (HER). Our previous work on doped PdH and Pd alloy hydrides showed that Ti-doped and Ti-alloyed Pd hydrides could improve the performance of the CO2 reduction reaction compared with pure Pd hydride. Compositions and chemical orderings of the surfaces with only one adsorbate under certain reaction conditions are linked to their stability, activity, and selectivity toward the CO2RR and HER, as shown in our previous work. In fact, various coverages, types, and mixtures of the adsorbates, as well as state variables such as temperature, pressure, applied potential, and chemical potential, could impact their stability, activity, and selectivity. However, these factors are usually fixed at common values to reduce the complexity of the structures and the complexity of the reaction conditions in most theoretical work. To address the complexities above and the huge search space, we apply a deep learning-assisted multitasking genetic algorithm to screen for PdxTi1-xHy surfaces containing multiple adsorbates for CO2RR under different reaction conditions. The ensemble deep learning model can greatly speed up the structure relaxations and retain a high accuracy and low uncertainty of the energy and forces. The multitasking genetic algorithm simultaneously finds globally stable surface structures under each reaction condition. Finally, 23 stable structures are screened out under different reaction conditions. Among these, Pd0.56Ti0.44H1.06 + 25%CO, Pd0.31Ti0.69H1.25 + 50%CO, Pd0.31Ti0.69H1.25 + 25%CO, and Pd0.88Ti0.12H1.06 + 25%CO are found to be very active for CO2RR and suitable to generate syngas consisting of CO and H2.

2.
Chemphyschem ; : e202300865, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391116

RESUMEN

For oxygen reduction reaction (ORR), the surface adsorption energies of O* and OH* intermediates are key descriptors for catalytic activity. In this work, we investigate anion-substituted zirconia catalyst surfaces and determine that adsorption energies of O* and OH* intermediates is governed by both structural and electronic effects. When the adsorption energies are not influenced by the structural effects of the catalyst surface, they exhibit a linear correlation with integrated crystal orbital Hamiltonian population (ICOHP) of the adsorbate-surface bond. The influence of structural effects, due to re-optimisation slab geometry after adsorption of intermediate species, leads to stronger adsorption of intermediates. Our calculations show that there is a change in the bond order to accommodate the incoming adsorbate species which leads to stronger adsorption when both structural and electronic effects influence the adsorption phenomena. The insights into the catalyst-adsorbate interactions can guide the design of future ORR catalysts.

3.
Nat Commun ; 15(1): 612, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242907

RESUMEN

Molecular understanding of the solid-liquid interface is challenging but essential to elucidate the role of the environment on the kinetics of electrochemical reactions. Alkali metal cations (M+), as a vital component at the interface, are found to be necessary for the initiation of carbon dioxide reduction reaction (CO2RR) on coinage metals, and the activity and selectivity of CO2RR could be further enhanced with the cation changing from Li+ to Cs+, while the underlying mechanisms are not well understood. Herein, using ab initio molecular dynamics simulations with explicit solvation and enhanced sampling methods, we systematically investigate the role of M+ in CO2RR on Cu surface. A monotonically decreasing CO2 activation barrier is obtained from Li+ to Cs+, which is attributed to the different coordination abilities of M+ with *CO2. Furthermore, we show that the competing hydrogen evolution reaction must be considered simultaneously to understand the crucial role of alkali metal cations in CO2RR on Cu surfaces, where H+ is repelled from the interface and constrained by M+. Our results provide significant insights into the design of electrochemical environments and highlight the importance of explicitly including the solvation and competing reactions in theoretical simulations of CO2RR.

4.
ChemSusChem ; 17(6): e202301277, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-37965780

RESUMEN

Electrochemical experiments and theoretical calculations have shown that Pd-based metal hydrides can perform well for the CO2 reduction reaction (CO2RR). Our previous work on doped-PdH showed that doping Ti and Nb into PdH can improve the CO2RR activity, suggesting that the Pd alloy hydrides with better performance are likely to be found in the PdxTi1-xHy and PdxNb1-xHy phase space. However, the vast compositional and structural space with different alloy hydride compositions and surface adsorbates, makes it intractable to screen out the stable and active PdxM1-xHy catalysts using density functional theory calculations. Herein, an active learning cluster expansion (ALCE) surrogate model equipped with Monte Carlo simulated annealing (MCSA), a CO* binding energy filter and a kinetic model are used to identify promising PdxTi1-xHy and PdxNb1-xHy catalysts with high stability and superior activity. Using our approach, we identify 24 stable and active candidates of PdxTi1-xHy and 5 active candidates of PdxNb1-xHy. Among these candidates, the Pd0.23Ti0.77H, Pd0.19Ti0.81H0.94, and Pd0.17Nb0.83H0.25 are predicted to display current densities of approximately 5.1, 5.1 and 4.6 µA cm-2 at -0.5 V overpotential, respectively, which are significantly higher than that of PdH at 3.7 µA cm-2.

5.
Chem Sci ; 14(14): 3913-3922, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035698

RESUMEN

The application of ab initio molecular dynamics (AIMD) for the explicit modeling of reactions at solid-liquid interfaces in electrochemical energy conversion systems like batteries and fuel cells can provide new understandings towards reaction mechanisms. However, its prohibitive computational cost severely restricts the time- and length-scales of AIMD. Equivariant graph neural network (GNN) based accurate surrogate potentials can accelerate the speed of performing molecular dynamics after learning on representative structures in a data efficient manner. In this study, we combined uncertainty-aware GNN potentials and enhanced sampling to investigate the reactive process of the oxygen reduction reaction (ORR) at an Au(100)-water interface. By using a well-established active learning framework based on CUR matrix decomposition, we can evenly sample equilibrium structures from MD simulations and non-equilibrium reaction intermediates that are rarely visited during the reaction. The trained GNNs have shown exceptional performance in terms of force prediction accuracy, the ability to reproduce structural properties, and low uncertainties when performing MD and metadynamics simulations. Furthermore, the collective variables employed in this work enabled the automatic search of reaction pathways and provide a detailed understanding towards the ORR reaction mechanism on Au(100). Our simulations identified the associative reaction mechanism without the presence of *O and a low reaction barrier of 0.3 eV, which is in agreement with experimental findings. The methodology employed in this study can pave the way for modeling complex chemical reactions at electrochemical interfaces with an explicit solvent under ambient conditions.

6.
J Am Chem Soc ; 145(3): 1897-1905, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36630567

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) is a promising technology for the clean energy economy. Numerous efforts have been devoted to enhancing the mechanistic understanding of CO2RR from both experimental and theoretical studies. Electrolyte ions are critical for the CO2RR; however, the role of alkali metal cations is highly controversial, and a complete free energy diagram of CO2RR at Au-water interfaces is still missing. Here, we provide a systematic mechanism study toward CO2RR via ab initio molecular dynamics simulations integrated with the slow-growth sampling (SG-AIMD) method. By using the SG-AIMD approach, we demonstrate that CO2RR is facile at the inner-sphere interface in the presence of K cations, which promote the CO2 activation with the free energy barrier of only 0.66 eV. Furthermore, the competitive hydrogen evolution reaction (HER) is inhibited by the interfacial cations with the induced kinetic blockage effect, where the rate-limiting Volmer step shows a much higher energy barrier (1.27 eV). Eventually, a comprehensive free energy diagram including both kinetics and thermodynamics of the CO2RR to CO and the HER at the electrochemical interface is derived, which illustrates the critical role of cations on the overall performance of CO2 electroreduction by facilitating CO2 adsorption while suppressing the hydrogen evolution at the same time.

7.
Faraday Discuss ; 242(0): 174-192, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36196677

RESUMEN

We present a computational study of the energetics and mechanisms of oxidation of Pt-Mn systems. We use slab models and simulate the oxidation process over the most stable (111) facet at a given Pt2Mn composition to make the problem computationally affordable, and combine Density-Functional Theory (DFT) with neural network potentials and metadynamics simulations to accelerate the mechanistic search. We find, first, that Mn has a strong tendency to alloy with Pt. This tendency is optimally realized when Pt and Mn are mixed in the bulk, but, at a composition in which the Mn content is high enough such as for Pt2Mn, Mn atoms will also be found in the surface outmost layer. These surface Mn atoms can dissociate O2 and generate MnOx species, transforming the surface-alloyed Mn atoms into MnOx surface oxide structures supported on a metallic framework in which one or more vacancy sites are simultaneously created. The thus-formed vacancies promote the successive steps of the oxidation process: the vacancy sites can be filled by surface oxygen atoms, which can then interact with Mn atoms in deeper layers, or subsurface Mn atoms can intercalate into interstitial sites. Both these steps facilitate the extraction of further bulk Mn atoms into MnOx oxide surface structures, and thus the progress of the oxidation process, with typical rate-determining energy barriers in the range 0.9-1.0 eV.

8.
Angew Chem Int Ed Engl ; 61(39): e202205805, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35918291

RESUMEN

Transition-metal-mediated dinitrogen fixation has been intensively investigated. The employment of main group elements for this vital reaction has recently sparked interest because of new dinitrogen reaction chemistry. We report ammonia synthesis via a chemical looping process mediated by a transition-metal-free barium hydride (BaH2 ). Experimental and computational studies reveal that the introduction of hydrogen vacancies is essential for creating multiple coordinatively unsaturated Ba sites for N2 activation. The adjacent lattice hydridic hydrogen (H- ) then undergoes both reductive elimination and reductive protonation to convert N2 to NHx . The ammonia production rate supports this hydride-vacancy mechanism via a chemical looping route that far exceeds that of a catalytic process. The BaH2 -mediated chemical looping process has prospects in future technologies for ammonia synthesis using transition-metal-free materials.

9.
ChemSusChem ; 15(10): e202200008, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35286748

RESUMEN

PdH-based catalysts hold promise for both CO2 reduction to CO and the hydrogen evolution reaction. Density functional theory is used to systematically screen for stability, activity, and selectivity of transition metal dopants in PdH. The transition metal elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W, and Re are doped into PdH(111) surface with six different doping configurations: single, dimer, triangle, parallelogram, island, and overlayer. We find that several dopants, such as Ti and Nb, have excellent predicted catalytic activity and CO2 selectivity compared to the pure PdH hydride. In addition, they display good stability due to their negative doping formation energy. The improved performance can be assigned to reaction intermediates forming two bonds consisting of one C-Metal and one O-Metal bond on the PdH surface, which break the scaling relations of intermediates, and thus have stronger HOCO* binding facilitating CO2 activation.

10.
J Chem Phys ; 155(13): 134703, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624986

RESUMEN

The electrochemical reduction of CO2 into valuable chemicals under mild conditions has become a promising technology for energy storage and conversion in the past few years, receiving much attention from theoretical researchers investigating the reaction mechanisms. However, most of the previous simulations are related to the key intermediates of *COOH and *CO using the computational hydrogen electrode approach under vacuum conditions, and the details of the CO2 activation are usually ignored due to the model simplicity. Here, we study the CO2 activation at the Au-water interfaces by considering the dynamics of an explicit water solvent, where both regular ab initio molecular dynamics and constrained ab initio molecular dynamics simulations are carried out to explore the CO2 adsorption/desorption reactions from the atomic level. By introducing K+ cations into Au(110)-water interfacial models, an electrochemical environment under reducing potentials is constructed, where the reaction free energy (0.26 eV) and activation energy (0.61 eV) are obtained for CO2 adsorption based on the thermodynamic integration. Moreover, the Bader charge analysis demonstrates that CO2 adsorption is activated by the first-electron transfer, forming the adsorbed CO2 - anion initiating the overall catalytic reaction.

11.
ChemSusChem ; 14(18): 3945-3952, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34323377

RESUMEN

Graphite felt is a widely used electrode material for vanadium redox flow batteries. Electrode activation leads to the functionalization of the graphite surface with epoxy, OH, C=O, and COOH oxygenic groups and changes the carbon surface morphology and electronic structure, thereby improving the electrode's electroactivity relative to the untreated graphite. In this study, density functional theory (DFT) calculations are conducted to evaluate functionalization's contribution towards the positive half-cell reaction of the vanadium redox flow battery. The DFT calculations show that oxygenic groups improve the graphite felt's affinity towards the VO2+ /VO2 + redox couple in the following order: C=O>COOH>OH> basal plane. Projected density-of-states (PDOS) calculations show that these groups increase the electrode's sp3 hybridization in the same order, indicating that the increase in sp3 hybridization is responsible for the improved electroactivity, whereas the oxygenic groups' presence is responsible for this sp3 increment. These insights can aid the selection of activation processes and optimization of their parameters.

12.
J Phys Chem Lett ; 12(14): 3552-3559, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33819038

RESUMEN

In this study, we use density functional theory to investigate the catalytic activity of graphene (G), single vacancy defective graphene (GSV), quaternary N-doped graphene (NGQ), and pyridinic N-doped graphene (NGpy, 3NGpy, and 4NGpy) on Co(0001) substrate for an oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). The results show pyridinic N-doped graphene on a Co support exhibited better performance than the NGQ on a Co support and free-standing systems. According to the results, ORR intermediates (*OOH, *O, and *OH) become more stable due to the presence of a Co substrate. The single pyridinic (3NGpy) layer placed on Co(0001) is the most active site. The overpotential for Co/3NGpy is rather higher compared to pure Pt(111) catalyst (0.65 V). Therefore, pyridinic N-doped graphene with a cobalt support could be a promising strategy to enhance the ORR activity of N-doped graphene in PEMFCs.

13.
ChemSusChem ; 13(5): 996-1005, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-31894657

RESUMEN

The development of an efficient electrocatalyst for the oxygen reduction reaction (ORR) is essential for the commercialization of fuel-cell technologies. Iron carbide encapsulated in N-doped graphene (NG/Fe3 C) has been recognized recently as a promising ORR catalyst. In this study, the stability and catalytic activity of N-doped graphene supported on metal-iron carbide (NG/M_Fe3 C) toward the ORR are investigated by using DFT calculations. The NG/M_Fe3 C heterostructure is modeled by substituting Fe atoms in the Fe3 C substrate near the NG/Fe3 C interface by metal atoms M (M=Cr-Mn, Co-Zn, Nb-Mo, Ta-W). The calculations show that the introduction of the metal atoms M alters the work function of the overlayer N-doped graphene, which is found to correlate with the binding strength of the ORR intermediates. The introduction of Ni or Co atoms at the interface improves the ORR activity of the NG/Fe3 C and stabilizes the heterostructure. The ORR activity increases as the concentration of Ni or Co atoms near the interface increases, and the stable heterostructure is available in a wide range of substituted concentrations. These results suggest approaches to improve the ORR activity of NG/Fe3 C catalysts.

14.
Chem Commun (Camb) ; 56(3): 427-430, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31825031

RESUMEN

Electrochemical reaction rates are sensitive to interactions between electrolyte cations and adsorbed reaction intermediates, e.g., cation-*OH interactions in the oxygen reduction reaction on platinum. Here, we calculate the free energy interaction between adsorbed *OH and K+/Li+ situated at the liquid water-Pt(111) interface using ab initio molecular dynamics (AIMD) and metadynamics. Li+ stabilizes *OH by 0.1 ± 0.1 eV and K+ destabilizes *OH by 0.1 ± 0.1 eV, in qualitative agreement with experimental cyclic voltammogram (CV) measurements. In contrast, the internal energy of *OH is stabilized by 0.3 eV and 0.4 eV for Li+ and K+, respectively. This demonstrates that entropy significantly destabilizes cation-*OH interactions and is vital in order to understand even the relative influence of cations at interfaces.

15.
Chem Sci ; 9(34): 6912-6921, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30288234

RESUMEN

The liquid water-Pt(111) interface is studied with constant temperature ab initio molecular dynamics to explore the importance of liquid water dynamics of catalytic reactions such as the oxygen reduction reaction in PEM fuel cells. The structure and energetics of hydroxyls formed at the liquid water-Pt(111) interface are found to be significantly different from those of the hydroxyl formed on a bare Pt(111) surface and the hydroxyl formed on a Pt(111) surface with a static water layer. We identify 1/12 ML *OH, 5/12 ML *OH and 2/3 ML *OH as particularly stable hydroxyl coverages in highly dynamic liquid water environments, which - contrary to static water-hydroxyl models - contain adjacent uncovered Pt sites. Atomic surface oxygen is found to be unstable in the presence of liquid water, in contrast to static atomic level simulations. These results give an improved understanding of hydroxide and surface oxide formation from Pt(111) cyclic voltammetry and allow us to draw detailed connections between the electrostatic potential and the interface structure. The study of hydrogen adsorption at the liquid water-Pt(111) interface finds competitive adsorption between the adsorbed hydrogen atoms and water molecules. This does not adhere with experimental observations, and this indicates that the Pt(111) surface has to be negatively charged for a correct description of the liquid water-Pt(111) interface at potentials where hydrogen adsorption occurs.

16.
Phys Chem Chem Phys ; 20(7): 5173-5179, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29393946

RESUMEN

The CO oxidation reaction on single 3d-transition metal catalytic sites in experimentally realized tetracyanoquinodimethane (TM-TCNQ) monolayers (TM = Sc-Zn) is systematically investigated by means of first-principles calculations. Considering the stabilities, adsorption characteristics and thermodynamics of all the ten candidates (Sc-Zn), Sc-TCNQ is found to display the lowest activation energies and yield the highest catalytic activity for room temperature CO oxidation. Exploring the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms, we find that the rate-limiting step of CO oxidation catalyzed by Sc-TCNQ (CO + O2* → OOCO*) can follow the LH mechanism with free energy barriers as low as 0.73 eV at 300 K. The second step of CO + O* → CO2 can occur with rather small energy barriers via either LH or ER mechanisms. The high activity of Sc-TCNQ can be attributed to its unique structural and electronic features by possessing high stability, optimum adsorption energies with adsorbates, and fast reaction kinetics. These results have significant implications for the synthesis of two-dimensional single atom catalysis for CO oxidation with low-cost and high activity at low temperature.

17.
ChemSusChem ; 11(3): 629-637, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29194999

RESUMEN

Minimizing energy and materials costs for driving the oxygen evolution reaction (OER) is paramount for the commercialization of water electrolysis cells and rechargeable metal-air batteries. Structural stability, catalytic activity, and electronic conductivity of pure and doped α-MnO2 for the OER are studied using density functional theory calculations. As model surfaces, we investigate the (110) and (100) facets, on which three possible active sites are identified: a coordination unsaturated, a bridge, and a bulk site. For pure and Cr-, Fe-, Co-, Ni-, Cu-, Zn-, Cd-, Mg-, Al-, Ga-, In-, Sc-, Ru-, Rh-, Ir-, Pd-, Pt-, Ti-, Zr-, Nb-, and Sn-doped α-MnO2 , the preferred valence at each site is imposed by adding/subtracting electron donors (hydrogen atoms) and electron acceptors (hydroxy groups). From a subset of stable dopants, Pd-doped α-MnO2 is identified as the best catalyst and the only material that can outperform pristine α-MnO2 . Different approaches to increase the bulk electron conductivity of semiconducting α-MnO2 are discussed.


Asunto(s)
Simulación por Computador , Compuestos de Manganeso/química , Óxidos/química , Oxígeno/química , Catálisis , Conductividad Eléctrica , Electrólisis , Metales/química , Modelos Químicos
18.
Phys Chem Chem Phys ; 17(17): 11647-57, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25865333

RESUMEN

Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys of Au with mixed Pt-Pd skins. The activity of the binary and ternary catalysts is explained through weakening of the OH binding energy caused by solute elements. However, given the low alloy formation energies it may be difficult to tune and retain the composition under operating conditions. This is particularly challenging for alloys containing Au due to a high propensity of Au to segregate to the surface. We also show that once Au is on the surface it will diffuse to defect sites, explaining why small amounts of Au retard dissolution of Pt nanoparticles. For the PtPd thin films there is no pronounced driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen reduction.

19.
J Phys Chem Lett ; 3(20): 2948-51, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-26292231

RESUMEN

Understanding trends in selectivity is of paramount importance for multi-electron electrochemical reactions. The goal of this work is to address the issue of 2e(-) versus 4e(-) reduction of oxygen on metal surfaces. Using a detailed thermodynamic analysis based on density functional theory calculations, we show that to a first approximation an activity descriptor, ΔGOH*, the free energy of adsorbed OH*, can be used to describe trends for the 2e(-) and 4e(-) reduction of oxygen. While the weak binding of OOH* on Au(111) makes it an unsuitable catalyst for the 4e(-) reduction, this weak binding is optimal for the 2e(-) reduction to H2O2. We find quite a remarkable agreement between the predictions of the model and experimental results spanning nearly 30 years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...