Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Methods Mol Biol ; 2799: 55-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727903

RESUMEN

NMDA-type ionotropic glutamate receptors are critically involved in many brain functions and are implicated in a variety of brain disorders. Seven NMDA receptor subunits exist (GluN1, GluN2A-D, and GluN3A-B) that assemble into tetrameric receptor subtypes with distinct functional properties and physiological roles. The majority NMDA receptors are composed of two GluN1 and two GluN2 subunits, which can assemble into four diheteromeric receptors subtypes composed of GluN1 and one type of GluN2 subunit (e.g., GluN1/2A), and presumably also six triheteromeric receptor subtypes composed of GluN1 and two different GluN2 subunits (e.g., GluN1/2A/2B). Furthermore, the GluN1 subunit exists as eight splice variants (e.g., GluN1-1a and GluN1-1b isoforms), and two different GluN1 isoforms can co-assemble to also form triheteromeric NMDA receptors (e.g., GluN1-1a/1b/2A). Here, we describe a method to faithfully express triheteromeric NMDA receptors in heterologous expression systems by controlling the identity of two of the four subunits. This method overcomes the problem that co-expression of three different NMDA receptor subunits generates two distinct diheteromeric receptor subtypes as well as one triheteromeric receptor subtype, thereby confounding studies that require a homogenous population of triheteromeric NMDA receptors. The method has been applied to selectively express recombinant triheteromeric GluN1/2A/2B, GluN1/2A/2C, GluN1/2B/2D, GluN1-1a/GluN1-1b/2A, GluN1-1a/GluN1-1b/2B receptors with negligible co-expression of the respective diheteromeric receptor subtypes. This method therefore enables quantitative evaluation of functional and pharmacological properties of triheteromeric NMDA receptors, some of which are abundant NMDA receptor subtypes in the adult brain.


Asunto(s)
Isoformas de Proteínas , Subunidades de Proteína , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Humanos , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células HEK293 , Animales , Membrana Celular/metabolismo , Expresión Génica
2.
Genome Res ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702196

RESUMEN

Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically exhibits phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption - the root of the pathogenesis - is similar in the different disease-relevant cell types. This is possible in principle, since all these cell types are subject to effects from the same causative gene, that has the same kind of function (e.g. methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2, and find that the chromatin accessibility changes in neurons are mostly distinct from changes in B or T cells. This is not because the neuronal accessibility changes occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that regulatory elements disrupted in B/T cells do exhibit chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators and suggest that blood-derived episignatures, while useful diagnostically, may not be well-suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.

3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711367

RESUMEN

Hi-C data are commonly normalized using single sample processing methods, with focus on comparisons between regions within a given contact map. Here, we aim to compare contact maps across different samples. We demonstrate that unwanted variation, of likely technical origin, is present in Hi-C data with replicates from different individuals, and that properties of this unwanted variation change across the contact map. We present band-wise normalization and batch correction, a method for normalization and batch correction of Hi-C data and show that it substantially improves comparisons across samples, including in a quantitative trait loci analysis as well as differential enrichment across cell types.


Asunto(s)
Sitios de Carácter Cuantitativo , Humanos , Animales
4.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559266

RESUMEN

Tens of thousands of RNA-sequencing experiments comprising hundreds of thousands of individual samples have now been performed. These data represent a broad range of experimental conditions, sequencing technologies, and hypotheses under study. The Recount project has aggregated and uniformly processed hundreds of thousands of publicly available RNA-seq samples. Most of these samples only include RNA expression measurements; genotype data for these same samples would enable a wide range of analyses including variant prioritization, eQTL analysis, and studies of allele specific expression. Here, we developed a statistical model based on the existing reference and alternative read counts from the RNA-seq experiments available through Recount3 to predict genotypes at autosomal biallelic loci in coding regions. We demonstrate the accuracy of our model using large-scale studies that measured both gene expression and genotype genome-wide. We show that our predictive model is highly accurate with 99.5% overall accuracy, 99.6% major allele accuracy, and 90.4% minor allele accuracy. Our model is robust to tissue and study effects, provided the coverage is high enough. We applied this model to genotype all the samples in Recount 3 and provide the largest ready-to-use expression repository containing genotype information. We illustrate that the predicted genotype from RNA-seq data is sufficient to unravel the underlying population structure of samples in Recount3 using Principal Component Analysis.

5.
Sci Rep ; 14(1): 6624, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503852

RESUMEN

We investigated the feasibility of using a dopamine transporter (DaT) tracer ligand ([123I]FP-CIT) along with novel multi-pinhole brain collimators for dynamic brain single photon emission computed tomography (SPECT) in suspected Parkinson's disease patients. Thirteen patients underwent dynamic tracer acquisitions before standard imaging. Uptake values were corrected for partial volume effects. Specific binding ratio (SBRcalc) was calculated, reflecting binding potential relative to non-displaceable binding (BPND) in the cortex. Additional pharmacokinetic parameters (BPND, R1, k2) were estimated using the simplified reference tissue model, revealing differences between Kahraman low-score (LS) and high-score (HS) groups. Results showed increasing striatal tracer uptake until 100 min post-injection, with consistent values afterward. Uptake and SBRcalc ratios matched visual assessment. LS patients had lower putamen than caudate nucleus tracer uptake, decreased BPND values, while R1 and k2 values were comparable to HS patients. In conclusion, dynamic multi-pinhole SPECT using DaT tracer with the extraction of pharmacokinetic parameters is feasible and could help enable early differentiation of reduced and normal DaT values.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Estudios de Factibilidad , Tropanos/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Putamen/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
6.
FEBS J ; 291(9): 1925-1943, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349812

RESUMEN

Functional bacterial amyloids play a crucial role in the formation of biofilms, which mediate chronic infections and contribute to antimicrobial resistance. This study focuses on the FapC amyloid fibrillar protein from Pseudomonas, a major contributor to biofilm formation. We investigate the initial steps of FapC amyloid formation and the impact of the chaperone-like protein FapA on this process. Using solution nuclear magnetic resonance (NMR), we recently showed that both FapC and FapA are intrinsically disordered proteins (IDPs). Here, the secondary structure propensities (SSPs) are compared to alphafold (DeepMind, protein structure prediction tool/algorithm: https://alphafold.ebi.ac.uk/) models. We further demonstrate that the FapA chaperone interacts with FapC and significantly slows down the formation of FapC fibrils. Our NMR titrations reveal ~ 18% of the resonances show FapA-induced chemical shift perturbations (CSPs), which has not been previously observed, the largest being for A82, N201, C237, C240, A241, and G245. These sites may suggest a specific interaction site and/or hotspots of fibrillation inhibition/control interface at the repeat-1 (R1)/loop-2 (L2) and L2/R3 transition areas and at the C-terminus of FapC. Remarkably, ~ 90% of FapA NMR signals exhibit substantial CSPs upon titration with FapC, the largest being for S63, A69, A80, and I92. A temperature-dependent effect of FapA was observed on FapC by thioflavin T (ThT) and NMR experiments. This study provides a detailed understanding of the interaction between the FapA and FapC, shedding light on the regulation and slowing down of amyloid formation, and has important implications for the development of therapeutic strategies targeting biofilms and associated infections.


Asunto(s)
Amiloide , Proteínas Bacterianas , Biopelículas , Chaperonas Moleculares , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Amiloide/metabolismo , Amiloide/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Pseudomonas/metabolismo , Estructura Secundaria de Proteína , Resonancia Magnética Nuclear Biomolecular
7.
JCI Insight ; 9(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38015625

RESUMEN

Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.


Asunto(s)
Fibroblastos , Osteogénesis , Animales , Ratones , Osteogénesis/fisiología , Fibroblastos/metabolismo , Complejo Represivo Polycomb 2 , Modelos Animales de Enfermedad , Histona Demetilasas
8.
Genome Biol ; 24(1): 246, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37885016

RESUMEN

BACKGROUND: RNA velocity analysis of single cells offers the potential to predict temporal dynamics from gene expression. In many systems, RNA velocity has been observed to produce a vector field that qualitatively reflects known features of the system. However, the limitations of RNA velocity estimates are still not well understood. RESULTS: We analyze the impact of different steps in the RNA velocity workflow on direction and speed. We consider both high-dimensional velocity estimates and low-dimensional velocity vector fields mapped onto an embedding. We conclude the transition probability method for mapping velocity estimates onto an embedding is effectively interpolating in the embedding space. Our findings reveal a significant dependence of the RNA velocity workflow on smoothing via the k-nearest-neighbors (k-NN) graph of the observed data. This reliance results in considerable estimation errors for both direction and speed in both high- and low-dimensional settings when the k-NN graph fails to accurately represent the true data structure; this is an unknown feature of real data. RNA velocity performs poorly at estimating speed in both low- and high-dimensional spaces, except in very low noise settings. We introduce a novel quality measure that can identify when RNA velocity should not be used. CONCLUSIONS: Our findings emphasize the importance of choices in the RNA velocity workflow and highlight critical limitations of data analysis. We advise against over-interpreting expression dynamics using RNA velocity, particularly in terms of speed. Finally, we emphasize that the use of RNA velocity in assessing the correctness of a low-dimensional embedding is circular.


Asunto(s)
Probabilidad , Análisis por Conglomerados
9.
PLoS Genet ; 19(10): e1010997, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871105

RESUMEN

Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.


Asunto(s)
Síndrome Metabólico , Humanos , Ratones , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Epigenómica , Proyectos Piloto , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Dieta Alta en Grasa/efectos adversos , Epigénesis Genética
10.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577516

RESUMEN

Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically exhibits phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption - the root of the pathogenesis - is similar in the different disease-relevant cell types. This is possible in principle, since all these cell-types are subject to effects from the same causative gene, that has the same kind of function (e.g. methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2, and find that the chromatin accessibility abnormalities in neurons are mostly distinct from those in B or T cells. This is not because the neuronal abnormalities occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that the regions disrupted in B/T cells do exhibit chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators, and suggest that blood-derived "episignatures" may not be well-suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.

11.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425751

RESUMEN

Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-seq comparing osteoblasts differentiated from Ezh2R684C/+ and Ezh2+/+ bone marrow mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases Kdm6a/6b substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state, and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.

12.
J Vet Intern Med ; 37(5): 1738-1749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37486176

RESUMEN

BACKGROUND: Differentiation of gastrointestinal cancer (GIC) from chronic inflammatory enteropathies (CIE) in cats can be challenging and often requires extensive diagnostic testing. MicroRNAs (miRNAs) have promise as non-invasive biomarkers in serum and feces for diagnosis of GIC. HYPOTHESIS/OBJECTIVES: Cats with GIC will have serum and fecal miRNA profiles that differ significantly from healthy cats and cats with CIE. Identify serum and fecal miRNAs with diagnostic potential for differentiation between cats with GIC and CIE as compared to healthy cats. ANIMALS: Ten healthy cats, 9 cats with CIE, and 10 cats with GIC; all client-owned. METHODS: Cats were recruited for an international multicenter observational prospective case-control study. Serum and feces were screened using small RNA sequencing for miRNAs that differed in abundance between cats with GIC and CIE, and healthy cats. Diagnostic biomarker potential of relevant miRNAs from small RNA sequencing and the literature was confirmed using reverse transcription quantitative real-time PCR (RT-qPCR). RESULTS: Serum miR-223-3p was found to distinguish between cats with GIC and CIE with an area under the curve (AUC) of 0.9 (95% confidence interval [CI], 0.760-1.0), sensitivity of 90% (95% CI, 59.6-99.5%), and specificity of 77.8% (95% CI, 45.3-96.1%). Serum miR-223-3p likewise showed promise in differentiating a subgroup of cats with small cell lymphoma (SCL) from those with CIE. No fecal miRNAs could distinguish between cats with GIC and CIE. CONCLUSION AND CLINICAL IMPORTANCE: Serum miR-223-3p potentially may serve as a noninvasive diagnostic biomarker of GIC in cats, in addition to providing a much needed tool for the differentiation of CIE and SCL.


Asunto(s)
Enfermedades de los Gatos , Neoplasias Gastrointestinales , MicroARNs , Gatos , Animales , Estudios de Casos y Controles , Biomarcadores , Neoplasias Gastrointestinales/veterinaria , Heces , Enfermedades de los Gatos/diagnóstico
13.
Nat Commun ; 14(1): 4059, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429865

RESUMEN

Feature selection to identify spatially variable genes or other biologically informative genes is a key step during analyses of spatially-resolved transcriptomics data. Here, we propose nnSVG, a scalable approach to identify spatially variable genes based on nearest-neighbor Gaussian processes. Our method (i) identifies genes that vary in expression continuously across the entire tissue or within a priori defined spatial domains, (ii) uses gene-specific estimates of length scale parameters within the Gaussian process models, and (iii) scales linearly with the number of spatial locations. We demonstrate the performance of our method using experimental data from several technological platforms and simulations. A software implementation is available at https://bioconductor.org/packages/nnSVG .


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Análisis por Conglomerados , Distribución Normal
14.
Semin Nucl Med ; 53(5): 577-585, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438172

RESUMEN

The bulk of biomedical positron emission tomography (PET)-scanning experiments are performed on mammals (ie, rodents, pigs, and dogs), and the technique is only infrequently applied to answer research questions in ectothermic vertebrates such as fish, amphibians, and reptiles. Nevertheless, many unique and interesting physiological characteristics in these ectothermic vertebrates could be addressed in detail through PET. The low metabolic rate of ectothermic animals, however, may compromise the validity of physiological and biochemical parameters derived from the images created by PET and other scanning modalities. Here, we review some of the considerations that should be taken into account when PET scanning fish, amphibians, and reptiles. We present specific results from our own experiments, many of which remain previously unpublished, and we draw on examples from the literature. We conclude that knowledge on the natural history and physiology of the species studied and an understanding of the limitations of the PET scanning techniques are necessary to avoid the design of faulty experiments and erroneous conclusions.


Asunto(s)
Reptiles , Vertebrados , Animales , Porcinos , Perros , Reptiles/fisiología , Anfibios/fisiología , Peces , Tomografía de Emisión de Positrones , Mamíferos
15.
Int J Legal Med ; 137(6): 1865-1873, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37391670

RESUMEN

Forensic pathologists may use 3D prints as demonstrative aids when providing expert testimony in court of law, but the effects remain unclear despite many assumed benefits. In this qualitative study, the effects of using a 3D print, demonstrating a blunt force skull fracture, in court were explored by thematic analysis of interviews with judges, prosecutors, defence counsels, and forensic pathologists with the aim of improving the expert testimony. Five semi-structured focus groups and eight one-to-one interviews with a total of 29 stakeholders were transcribed ad verbatim and analysed using thematic analysis. The study found that a highly accurate 3D print of a skull demonstrated autopsy findings in detail and provided a quick overview, but sense of touch was of little benefit as the 3D print had different material characteristics than the human skull. Virtual 3D models were expected to provide all the benefits of 3D prints, be less emotionally confronting, and be logistically feasible. Both 3D prints and virtual 3D models were expected to be less emotionally confronting than autopsy photos. Regardless of fidelity, an expert witness was necessary to translate technical language and explain autopsy findings, and low-fidelity models may be equally suited as demonstrative aids. The court infrequently challenged the expert witnesses' conclusions and, therefore, rarely had a need for viewing autopsy findings in detail, therefore rarely needing a 3D print.

16.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37163127

RESUMEN

Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genomic DNA methylation analyses and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects reveals a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the Farnesoid X receptor pathway, and found that GW4064 exerts genotype-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis, as well as increased inflammatory-related gene expression changes in NOD. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention, and a mouse platform for guiding this approach.

17.
Biostatistics ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37257175

RESUMEN

In complex tissues containing cells that are difficult to dissociate, single-nucleus RNA-sequencing (snRNA-seq) has become the preferred experimental technology over single-cell RNA-sequencing (scRNA-seq) to measure gene expression. To accurately model these data in downstream analyses, previous work has shown that droplet-based scRNA-seq data are not zero-inflated, but whether droplet-based snRNA-seq data follow the same probability distributions has not been systematically evaluated. Using pseudonegative control data from nuclei in mouse cortex sequenced with the 10x Genomics Chromium system and mouse kidney sequenced with the DropSeq system, we found that droplet-based snRNA-seq data follow a negative binomial distribution, suggesting that parametric statistical models applied to scRNA-seq are transferable to snRNA-seq. Furthermore, we found that the quantification choices in adapting quantification mapping strategies from scRNA-seq to snRNA-seq can play a significant role in downstream analyses and biological interpretation. In particular, reference transcriptomes that do not include intronic regions result in significantly smaller library sizes and incongruous cell type classifications. We also confirmed the presence of a gene length bias in snRNA-seq data, which we show is present in both exonic and intronic reads, and investigate potential causes for the bias.

18.
J Gen Physiol ; 155(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37078900

RESUMEN

NMDA-type ionotropic glutamate receptors are critical for normal brain function and are implicated in central nervous system disorders. Structure and function of NMDA receptors composed of GluN1 and GluN3 subunits are less understood compared to those composed of GluN1 and GluN2 subunits. GluN1/3 receptors display unusual activation properties in which binding of glycine to GluN1 elicits strong desensitization, while glycine binding to GluN3 alone is sufficient for activation. Here, we explore mechanisms by which GluN1-selective competitive antagonists, CGP-78608 and L-689,560, potentiate GluN1/3A and GluN1/3B receptors by preventing glycine binding to GluN1. We show that both CGP-78608 and L-689,560 prevent desensitization of GluN1/3 receptors, but CGP-78608-bound receptors display higher glycine potency and efficacy at GluN3 subunits compared to L-689,560-bound receptors. Furthermore, we demonstrate that L-689,560 is a potent antagonist of GluN1FA+TL/3A receptors, which are mutated to abolish glycine binding to GluN1, and that this inhibition is mediated by a non-competitive mechanism involving binding to the mutated GluN1 agonist binding domain (ABD) to negatively modulate glycine potency at GluN3A. Molecular dynamics simulations reveal that CGP-78608 and L-689,560 binding or mutations in the GluN1 glycine binding site promote distinct conformations of the GluN1 ABD, suggesting that the GluN1 ABD conformation influences agonist potency and efficacy at GluN3 subunits. These results uncover the mechanism that enables activation of native GluN1/3A receptors by application of glycine in the presence of CGP-78608, but not L-689,560, and demonstrate strong intra-subunit allosteric interactions in GluN1/3 receptors that may be relevant to neuronal signaling in brain function and disease.


Asunto(s)
Glicina , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Dominios Proteicos , Glicina/farmacología , Sitios de Unión
19.
Bioinform Adv ; 3(1): vbad020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874953

RESUMEN

Summary: Thousands of DNA methylation (DNAm) array samples from human blood are publicly available on the Gene Expression Omnibus (GEO), but they remain underutilized for experiment planning, replication and cross-study and cross-platform analyses. To facilitate these tasks, we augmented our recountmethylation R/Bioconductor package with 12 537 uniformly processed EPIC and HM450K blood samples on GEO as well as several new features. We subsequently used our updated package in several illustrative analyses, finding (i) study ID bias adjustment increased variation explained by biological and demographic variables, (ii) most variation in autosomal DNAm was explained by genetic ancestry and CD4+ T-cell fractions and (iii) the dependence of power to detect differential methylation on sample size was similar for each of peripheral blood mononuclear cells (PBMC), whole blood and umbilical cord blood. Finally, we used PBMC and whole blood to perform independent validations, and we recovered 38-46% of differentially methylated probes between sexes from two previously published epigenome-wide association studies. Availability and implementation: Source code to reproduce the main results are available on GitHub (repo: recountmethylation_flexible-blood-analysis_manuscript; url: https://github.com/metamaden/recountmethylation_flexible-blood-analysis_manuscript). All data was publicly available and downloaded from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). Compilations of the analyzed public data can be accessed from the website recount.bio/data (preprocessed HM450K array data: https://recount.bio/data/remethdb_h5se-gm_epic_0-0-2_1589820348/; preprocessed EPIC array data: https://recount.bio/data/remethdb_h5se-gm_epic_0-0-2_1589820348/). Supplementary information: Supplementary data are available at Bioinformatics Advances online.

20.
Cancer Res ; 83(11): 1905-1916, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36989344

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell type-of-origin of PanINs and PDACs in humans is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question. Here, we performed laser-capture microdissection on surgically resected specimens from 18 patients to isolate, with high purity, DNA for whole-genome bisulfite sequencing from four relevant cell types: acini, nonneoplastic ducts, PanIN lesions, and PDAC lesions. Differentially methylated regions (DMR) were identified using two complementary analytical approaches: bsseq, which identifies any DMRs but is particularly useful for large block-like DMRs, and informME, which profiles the potential energy landscape across the genome and is particularly useful for identifying differential methylation entropy. Both global methylation profiles and block DMRs clearly implicated an acinar origin for PanINs. At the gene level, PanIN lesions exhibited an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia. In 97.6% of PanIN-specific DMRs, PanIN lesions had an intermediate methylation level between normal and PDAC, which suggests from an information theory perspective that PanIN lesions are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC. The shared epigenetic lineage between PanIN and PDAC lesions could provide an opportunity for prevention by targeting aberrantly methylated progression-related genes. SIGNIFICANCE: Analysis of DNA methylation landscapes provides insights into the cell-of-origin of PanIN lesions, clarifies the role of PanIN lesions as metaplastic precursors to human PDAC, and suggests potential targets for chemoprevention.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Metilación de ADN , Neoplasias Pancreáticas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...